
CS 179: GPU 
Programming
LECTURE 5: GPU COMPUTE ARCHITECTURE FOR THE LAST TIME

1



Last time...
GPU Memory System
◦ Different kinds of memory pools, caches, etc
◦ Different optimization techniques

2

Presenter
Presentation Notes
I’ll mention shared memory a few more times in this lecture. shared memory is user programmable cache on SM.



Warp Schedulers
Warp schedulers find a warp that is ready to execute its next instruction and available execution 
cores and then start execution
◦ GK110: 4 warp schedulers, 2 dispatchers in each SM
◦ Starts instructions in up to 4 warps each clock,
◦ and starts up to 2 instructions in each warp.

3

Presenter
Presentation Notes
Each scheduler has 2 dispatchers.

Can start 2 instructions at once only if there are no instruction dependencies.

Note that it now takes up to 80 warp instructions to hide latency of warp add (10 cycles) rather than just 10 warp instructions.

GK110 has 15 SMs, so on a single clock up to 15 * 8 = 120 warp instructions initiated => 120 * 32 = 3840 scalar instructions.



GK110 (Kepler) numbers
● max threads / SM = 2048 (64 warps)
● max threads / block = 1024 (32 warps)
● 32 bit registers / SM = 64k
● max shared memory / SM = 48KB
The number of blocks that run concurrently on a SM depends on the resource requirements of the 
block!

4

Presenter
Presentation Notes
ask what max threads / SM and max threads / block mean about how many blocks we need to achieve full occupancy



Occupancy
occupancy = warps per SM / max warps per SM

max warps / SM depends only on GPU

warps / SM depends on warps / block, registers / block, shared memory / block.

5

Presenter
Presentation Notes
We fit some integer number of blocks onto each SM.

threads/block matters because (combined with the number of blocks) let’s us know how many warps there are on the SM.

So what determines how many blocks are put on the SM? 
register usage / block. You can specify __launch_bounds__ to limit register usage. Can easily get register usage numbers by setting a flag in nvcc.
shmem / block.

Could also consider “register occupancy” or “shared memory occupancy”, but I’ve never heard of anyone doing this.



GK110 Occupancy
100% occupancy

● 2 blocks of 1024 threads
● 32 registers/thread
● 24KB of shared memory / block

50% occupancy
● 1 block of 1024 threads
● 64 registers/thread
● 48KB of shared memory / block

6

Presenter
Presentation Notes
Higher occupancy is generally better, but certainly not always. Why might lower occupancy be better?

Lower occupancy allows hiding less latency, but there is also (hopefully) less latency to hide because each thread has more resources.

Share that for my GPU matrix multiplication implementation I found 25% occupancy works best (because 128 registers/thread)



This lecture
◦ Synchronization
◦ Atomic Operations
◦ Instruction Dependencies
◦ Instruction Level Parallelism (ILP)

7



Synchronization
Synchronization is a process by which multiple threads must indirectly communicate 
with each other in order to make sure they do not clash with each other
◦ Example of a synchronization issue:
◦ int x = 1;
◦ Thread 1 wants to add 1 to x;
◦ Thread 2 wants to add 1 to x;
◦ Thread 1 reads in the value of x (which is 1) into a register
◦ Thread 2 reads in the value of x (which is still 1) into a register
◦ Both threads increment the values they read in but they both think the final value 

is 2
◦ They write x back out and the final result is 2

8



Synchronization
On a CPU, you can solve synchronization issues using Locks, Semaphores, Condition Variables, etc.
On a GPU, these solutions introduce too much memory and process overhead
◦ We have simpler solutions better suited for parallel programs

9



CUDA Synchronization
Use the __syncthreads() function to sync threads within a block
◦ Only works at the block level
◦ SMs are separate from each other so can't do better than this

◦ Similar to barrier() function in C/C++

10



Atomic Operations
Atomic Operations are operations that ONLY happen in sequence
◦ For example, if you want to add up N numbers by adding the numbers to a variable that starts 

in 0, you must add one number at a time
◦ Don't do this though. We'll talk about better ways to do this in the next lecture. Only use 

when you have no other options
CUDA provides built in atomic operations
◦ Use the functions: atomic<op>(float *address, float val);
◦ Replace <op> with one of: Add, Sub, Exch, Min, Max, Inc, Dec, And, Or, Xor
◦ e.g. atomicAdd(float *address, float val) for atomic addition

◦ These functions are all implemented using a function called atomicCAS(int *address, int compare, int val)
◦ CAS stands for compare and swap. The function compares *address to compare and swaps the value to 

val if the values are different

11



Instruction Dependencies

acc += x[0];
acc += x[1];
acc += x[2];
acc += x[3];
...

12

An Instruction Dependency is a requirement relationship 
between instructions that force a sequential execution
◦ In the example on the right, each summation call must 

happen in sequence because the value of acc depends 
on the previous summation as well

Can be caused by direct dependencies or requirements set 
by the execution order of code
◦ I.e. You can't start an instruction until all previous 

operations have been completed in a single thread

Presenter
Presentation Notes
Instruction dependencies are important to think about for high performance computing on x86, Nvidia architectures.

This is just an unrolled for loop.




Instruction Level Parallelism (ILP)
Instruction Level Parallelism is when you avoid performances losses caused by 
instruction dependencies
◦ In CUDA, also removes performances losses caused by how certain operations 

are handled by the hardware

13



ILP Example

z0 = x[0] + y[0];
z1 = x[1] + y[1];

x0 = x[0];
y0 = y[0];
z0 = x0 + y0;

x1 = x[1];
y1 = y[1];
z1 = x1 + y1;

14

COMPILATION

• The second half of the code can't start execution until the first half completes

Presenter
Presentation Notes
The x0 = x[0] lines indicate loading from memory into register, about 300 clocks.

Which instructions can overlap? Can we do better at overlapping instructions to hide latency?

HPC involves a lot of worrying about if the compiler is doing what you want.



ILP Example

z0 = x[0] + y[0];
z1 = x[1] + y[1];

x0 = x[0];
y0 = y[0];
x1 = x[1];
y1 = y[1];
z0 = x0 + y0;
z1 = x1 + y1;

15

COMPILATION

• Sequential nature of the code due to instruction dependency has been minimized.
• Additionally, this code minimizes the number of memory transactions required

Presenter
Presentation Notes
The x0 = x[0] lines indicate loading from memory into register, about 300 clocks.

Which instructions can overlap? Can we do better at overlapping instructions to hide latency?

HPC involves a lot of worrying about if the compiler is doing what you want.



Questions?
◦ Synchronization
◦ Atomic Operations
◦ Instruction Dependencies
◦ Instruction Level Parallelism (ILP)

16



Next time...
Set 2 Recitation on Friday (04/06)
GPU based algorithms (next week, lectures will be given by Aadyot)

17


	CS 179: GPU Programming
	Last time...
	Warp Schedulers
	GK110 (Kepler) numbers
	Occupancy
	GK110 Occupancy
	This lecture
	Synchronization
	Synchronization
	CUDA Synchronization
	Atomic Operations
	Instruction Dependencies
	Instruction Level Parallelism (ILP)
	ILP Example
	ILP Example
	Questions?
	Next time...

