CS 179: GPU Programming

Lecture 11 / Homework 4

Breadth-First Search

e Given source vertex S:

— Find min. #edges to reach every
vertex from S

— (Assume source is vertex 0)

e Sequential pseudocode:

Tet Q be a queue
Q.enqueue(source)
Tabel source as discovered
source.value <- 0

while Q is not empty
v « Q.dequeue()
for all edges from v to w in G.adjacentEdges(v):
if w is not labeled as discovered
Q.enqueue (w)
Tabel w as discovered, w.value <- v.value + 1

Alternate BFS algorithm

* New sequential pseudocode:

Input: va, Ea, source (graph in “compact adjacency Tist” format)
Create frontier (F), visited array (X), cost array (C)

F <- (all false)

X <- (a1l false)

C <- (al1 dinfinity)

F[source] <- true
C[source] <- 0
while F is not all false:
Parallelizable!
for 0 <1 < |val:
if F[i] is true:

F[i] <- false
X[1] <- true

for Ea[val[il]l < j < Ea[vali+1]]:

if X[j] is false:

C[j] <- c[i] + 1
F[J] <- true

GPU-accelerated BFS

 CPU-side pseudocode:

Input: va, Ea, source (graph in “compact adjacency Tist” format)
Create frontier (F), visited array (X), cost array (C)

F <- (all false)

X <- (a1l false)

C <- (al1 dinfinity)

Can represent boolean

F[source] <- true _
values as Integers

C[source] <- 0
while F is not all false:
call GPU kernel(F, X, C, va, Ea)

 GPU-side kernel pseudocode:

if F[threadId] is true:

F[threadid] <- false
X[threadid] <- true

for Ea[val[threadid]] < j < Ea[va[threadlId + 1]]:
if X[j] is false:
C[j] <- c[threadid] + 1

F[J] <- true

Texture Memory (and co-stars)

* Another type of memory system, featuring:
— Spatially-cached read-only access
— Avoid coalescing worries
— Interpolation
— (Other) fixed-function capabilities
— Graphics interoperability

X-ray CT Reconstruction

Medical Imaging

* See inside people!

— Critically important in medicine today

X-ray imaging (Radiography)

“Algorithm”:
— Generate electromagnetic
radiation

— Measure radiation at the
“camera”

Certain tissues are more e PP _
“opaque” to X-rays

Like photography!

Radiography limitations

* Generates 2D image of
3D body

e What if we want a “slice”
of 3D body?

— Goal: 3D reconstruction!
(from multiple slices)

X-ray Computed Tomography (CT)

CT Scan

X-ray Computed Tomography (CT)

* Generate 2D “slice” using
3D imaging

— New imaging possibilities!

e Reconstruction less
straightforward

X-ray Computed Tomography (CT)

e “Algorithm” (per-slice):
— Take *lots™* of pictures at
different angles
* Each “picture” is a 1-D line

— Reconstruct the many 1-D
pictures into a 2-D image

X-ray Tu

e Harder, more
computationally intensive!

— 3D reconstruction requires
multiple slices

Detector

Mathematical Details

e X-ray CT (per-slice) performs a 2D X-ray
transform (eq. to 2D Radon transform).

— Suppose body density represented by f(x) within
2D slice, x = (x,y)

— Assume linear attenuation of radiation
— For each line L of radiation measured by detector:

lyetect = Iemitf f = Ilemit f]R{ f(fo + tHL) dt
L

. éL: a unit vector in direction of L

Mathematical Details

lietect = Iemitf f = lomit j]R{ f(fo + tHL) dt
L

* Defined as Lebesgue integral — non-oriented

— Opposite radiation direction should have same
attenuation!

— Re-define as:

lyetect = Iemitf f(fo + tHL) |dt|

Mathematical Details

— For each line L of radiation measured by detector:

lietect = Iemitf f = Iemitf f(fo + tHL) |dt|
L — 00

* Define general X-ray transform (for all lines L in R?):

00

RO = [(o +t6,) 14t

— Fractional values of attenuation
— X, lies along L

Mathematical Details

* Define general X-ray transform:

o0

RF(L) = f £ (%o + t6y) |dt]

— Parameterize 6 = (cos 0,sin0)

e Redefine as:

(RF)Go,0) = | f(5 +1B) ldt

— Define for 8 € [0, 2m)

Mathematical Details

00

(RF)Go,0) = | f(5 +18) lde

* |mportant properties:
— Many x, are redundant!
— Symmetry: Rf (x,,0) = Rf (xy, 0 +)
* Can define for 8 € [0,)

X-ray Computed Tomography (CT)

* Redefined X-ray transform, 8 € |0,):

00

(RF)Gio,0) = | f(5 +1B) lde

— 00

* In reality: Xeray Tu

— Only defined for some 6!

X-ray CT Reconstruction

e Given the results of our scan (the sinogram):

0@

(RF)Go,0) = | f(5 +1B) ldt

* Obtain the original data: (“density” of our body)

f(xy)
* |n reality:
— This is hard

— We only scanned at certain (discrete) values of 0!
* Consequence: Perfect reconstruction is impossible!

Reconstruction

X-ray

detector

Vot Vs .

.

2

S \\

Reconstruction

Different 8’s \

X-ray
detector

X-ray
emitter

Each location on

Reconstruction dotoctor

Different ©’s Corresponds to
/ multiple ;'
X-ray

detector

N AN

\ =~ ~
' : »)
& :
A o \
.
\

X-ray
emitter

X-ray CT Reconstruction

e Given the results of our scan (the sinogram):

0@

(RF)Go,0) = | f(5 +1B) ldt

* Obtain the original data: (“density” of our body)

f(xy)
* |n reality:
— This is hard

— We only scanned at certain (discrete) values of 0!
* Consequence: Perfect reconstruction is impossible!

Imperfect Reconstruction

10 angles of imaging

Y AR, T
2008 g o : o S \ h s B
A /,v' ’/’ # N \

A _/& o l\ & 4

\ o { \\
sool i) LY & A

800} ¥, f ¢ pd

/ 7 f
£ N RIS
» & L h «
» v r | ot
1000 | i
- - X / —— -

0 200 400 600 800 1000

200

400

600

800

1000

200

400

800

200 angles of imaging

1000

Reconstruction

* Simpler algorithm — backprojection
— Not quite inverse Radon transform!

* Claim: Can reconstruct image as:

D =) RNEO) =) f f(&+10) lat
6 o "%

— (6’s where X-rays are taken)

— In other words: To reconstruct point, sum measurement
along every line passing through that point

Each location on

Reconstruction dotoctor

Different ©’s Corresponds to
/ multiple ;'
X-ray

detector

N AN

\ =~ ~
' : »)
& :
A o \
.
\

X-ray
emitter

Geometry Details

* For x,, need to find:

— At each 6, which radiation measurement
corresponds to the line passing through x,?

Geometry Details

“The patient”

/ (slice)

Detector

Emitter

Geometry Details

“The patient”

(xy (slice)

Detector

Emitter

Geometry Details
Distance from —

sinogram centerline

“The patient”

(xy (slice)

Detector

Emitter

Geometry Details
Distance from —

sinogram centerline

“The patient”

(Xy o
Radiation slope:

m = -cos(6)/sin(0)

7

Emitter

Detector

Geometry Details

Distance from

sinogram centerline\ld/

Perpendicular slope:
(Xor Yo q =-1/m (correction)

Detector

Radiation slope:
m = -cos(0)/sin(06)

\

Emitter

G eom et ry Deta i IS Find intersection

point (x,y;)
Then d? = x.2 + y.2

Distance from

sinogram centerline\d/

Perpendicular slope:
(Xor Yo q =-1/m (correction)

Detector

Radiation slope:
m = -cos(6)/sin(8)

Vi

Emitter

|

Intersection point

* Line 1: (point-slope)

(Vi —¥o) = m(x; — xp)
* Line 2:

Corrections yi = qxi

e Combine and solve:

Yo — MXy

Xi = g—m Vi = qXi

Intersection point

* |Intersection point:

Yo — MXp

Xi = g—m Yi = qXi

Corrections

e Distance from measurement centerline:

d = \x;% + y;?

G eom et ry Deta i IS Find intersection

point (x,y;)
Then d? = x.2 + y.2

Distance from

sinogram centerline\d/

Perpendicular slope:
(Xor Yo q =-1/m (correction)

Detector

Radiation slope:
m = -cos(6)/sin(8)

Vi

Emitter

|

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image) fr(x) = Z(Rf)(f; 0)
0

for all y in image:
for all x in image:
for all theta in sinogram:

Clarification: Remember not ~ calculate m from theta

to confuse geometric x,y calculate x_i, y_i from m, -1/m
with pixel x,y! calculate d from x_i, y_i
image[x,y] += sinogram[theta, “distance”]
(0,0) geometrically is the Correction/clarification:
center pixel of the image, * dis the distance from the center of the
and (0,0) in pixel coordinates sinogram — remember to center index
is the upper left hand corner. appropriately
Image is indexed row-wise * Use —d instead of d as appropriate (when -1/m

>0andx i<0,orif-1/m<0andx i>0

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image) f;(f):::E:(Rf)(f;H)
Z]

Parallelizable!
for all y in image: Inside loop depends
for all x in image: only on x, y, theta
for all theta in sinogram:
calculate m from theta
calculate x_i, y_i from m, -1/m
calculate d from x_i, y_i

(corrections/clarification — image[x,y] += sinogram[theta, “distance”]
see slide 37)

Sequential pseudocode

(input: X-ray sinogram):

(allocate output image) f;(f):::E:(Rf)(f;H)
Z]

For this assignment, only
parallelize w/r/to x, y

for all y 1in image:
for all x in image:
for all theta in sinogram:
calculate m from theta
calculate x_i, y_i from m, -1/m
calculate d from x_i, y_i

(corrections/clarification — image[x,y] += sinogram[theta, “distance”]
see slide 37)

(provides lots of
parallelization already,
other issues)

Cautionary notes

* yin animage is opposite of y geometrically!
— (Graphics/computing convention)
* Edge cases (divide-by-0):
—0=0:
* d=x,
—0=m/2:
e d-= yO

Almost a good reconstruction!

Original

Reconstruction

Almost a good reconstruction!

* “Backprojection blur”

— Similar to low-pass
property of SMA (Week 1)

— We need an “anti-blur”!
(opposite of Homework 1)

Almost a good reconstruction!

e Solution:
— A “high-pass filter”

— We can get frequency info
in parallelizable manner!

* (FFT, Week 3)

Almost a good reconstruction!

e Solution:
— A “high-pass filter”

— We can get frequency info
in parallelizable manner!

* (FFT, Week 3)

High-pass filtering

* |nstead of filtering on image (2D HPF):

— Filter on sinogram! (1D HPF)
* (Equivalent reconstruction by linearity)

— Use cuFFT batch feature!

 We’ll use a “ramp filter”

— Retained amplitude is

linear function of frequency

Almost a good reconstruction!

e CPU-side:
(input: X-ray sinogram):

calculate FFT on sinogram using CUuFFT
call filterkernel on freq-domain data
Calculate IFFT on freg-domain data

-> get new sinogram

e GPU-side:

filterKernel:
Select specific freq-amplitude
based on thread ID

Get new amplitude from
ramp equation

GPU Hardware

* Non-coalesced access!
— Sinogram 0, index ~d,
— Sinogram 1, index ~d,

— Sinogram 2, index ~d,

* Non-coalesced access!

* However:

GPU Hardware

— Sinogram 0, index ~d,

R
— Sinogram 1, index ~d, '\\
— Sinogram 2, index ~d,

— Accesses are 2D spatially local!

GPU Hardware

e Solution:

— Cache sinogram in texture memory!
e Read-only (un-modified once we load it)
* |gnore coalescing
e 2D spatial caching!

Summary/pseudocode

(input: X-ray sinogram)
Filter sinogram (Slide 46)

Set up 2D texture cache on sinogram (Lecture 10):
Copy to CUDA array (2D)
Set addressing mode (clamp)
Set filter mode (linear, but won’t matter)
Set no normalization
Bind texture to sinogram

Calculate image backprojection (parallelize Slide 39)

e Result: 200-250x speedup! (or more)

Result: 200-250x speedup! (or more)

200 200

400 400

600 600

800
800

1000
1000

0 200 400 600 800

0 200 400 600 800 1000

Admin

* This topic is harder than before!
— Lots of information
— | may have missed something

— If there’s anything unclear, let us know

* | can (and likely will) make additional slides/explanatory
materials

Admin

e C/CUDA code should work on all machines
* Pre/post-processing:

— Python scripts preprocess.py, postprocess.py
* (To run Python scripts: “python <script>.py”)

— Either:

e Use haru

* Install python, (optionally pip) -> numpy, scipy,
matplotlib, scikit-image

Resources

* Imaging methods:
— X-Ray CT in Nuclear Medicine

— CT Image Reconstruction (Peters, at AAPM)

— Elements of Modern Signal Processing (Candes, at
Stanford)

* Proof that our algorithm works!

http://www.thefullwiki.org/Basic_Physics_of_Nuclear_Medicine/X-Ray_CT_in_Nuclear_Medicine
http://www.thefullwiki.org/Basic_Physics_of_Nuclear_Medicine/X-Ray_CT_in_Nuclear_Medicine
http://www.thefullwiki.org/Basic_Physics_of_Nuclear_Medicine/X-Ray_CT_in_Nuclear_Medicine
http://www.aapm.org/meetings/02am/pdf/8372-23331.pdf
http://statweb.stanford.edu/~candes/math262/Lectures/Lecture10.pdf
http://statweb.stanford.edu/~candes/math262/Lectures/Lecture10.pdf
http://statweb.stanford.edu/~candes/math262/Lectures/Lecture10.pdf
http://statweb.stanford.edu/~candes/math262/Lectures/Lecture10.pdf

