
CS 179: GPU Programming

Lecture 20: Cross-system

communication

The Wave Equation

�

��

��,��� − ��,�

∆�
= �

�

��

����,� − ��,�

∆�

→

(��,���−��,�) − (��,�−��,���)

(∆�)
= �

(����,�−��,�) − (��,�−����,�)

(∆�)

→

��,��� = 2��,� − ��,��� +
�∆�

∆�

(����,�−2��,� + ����,�)

Multiple GPU Solution

• Big idea: Divide our data array between n

GPUs!

Multiple GPU Solution

• Problem if we’re at the boundary of a process!

��,��� = 2��,� − ��,��� +
�∆�

∆�

(����,�−2��,� + ����,�)

x

Where do we get ����,�? (It’s

outside our process!)

t

t-1

t+1

Multiple GPU Solution

• Communication can be expensive!

– Expensive to communicate every timestep to send

1 value!

– Better solution: Send some m values every m

timesteps!

Possible Implementation

• Send “current” data (current at time of

communication)

Proc0 Proc1 Proc2

Possible Implementation

• Then send “old” data

Proc0 Proc1 Proc2

Multiple GPU Solution

• (More details next lecture)

• General idea – suppose we’re on GPU r in 0…(N-1):

– If we’re not GPU N-1:

• Send data to process r+1

• Receive data from process r+1

– If we’re not GPU 0:

• Send data to process r-1

• Receive data from process r-1

– Wait on requests

Multiple GPU Solution

• GPUs on same system:

– Use CUDA-supplied functions (cudaMemcpyPeer,

etc.)

• GPUs on different systems:

– Need cross-system, inter-process communication…

Supercomputers

• Often have:

– Many different systems

– Few GPUs/system

GPU cluster, CSIRO

Distributed System

• A collection of computers

– Each computer has its own local

memory!

– Communication over a network

� Communication suddenly

becomes harder! (and slower!)

� GPUs can’t be trivially used

between computers

Message Passing Interface (MPI)

• A standard for message-passing

– Multiple implementations exist

– Standard functions that allow easy

communication of data between processes

• Non-networked systems:

– Equivalent to memcpy on local system

MPI Functions

• There are seven basic functions:

– MPI_Init initialize MPI environment

– MPI_Finalize terminate MPI environment

– MPI_Comm_size how many processes we have running

– MPI_Comm_rank the ID of our process

– MPI_Isend send data (nonblocking)

– MPI_Irecv receive data (nonblocking)

– MPI_Wait wait for request to complete

MPI Functions

• Some additional functions:

– MPI_Barrier wait for all processes to reach a
certain point

– MPI_Bcast send data to all other processes

– MPI_Reduce receive data from all processes and

reduce to a value

– MPI_Send send data (blocking)

– MPI_Recv receive data (blocking)

Blocking vs. Non-blocking

• MPI_Isend and MPI_Irecv are asynchronous (non-blocking)
– Calling these functions returns immediately

• Operation may not be finished!

– Should use MPI_Wait to make sure operations are completed

– Special “request” objects for tracking status

• MPI_Send and MPI_Recv are synchronous (blocking)
– Functions don’t return until operation is complete

– Can cause deadlock!

– (we won’t focus on these)

MPI Functions - Wait

• int MPI_Wait(MPI_Request *request, MPI_Status *status)

• Takes in…

– A “request” object corresponding to a

previous operation

• Indicates what we’re waiting on

– A “status” object

• Basically, information about incoming data

MPI Functions - Reduce

• int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

• Takes in…
– A “send buffer” (data obtained from every process)

– A “receive buffer” (where our final result will be
placed)

– Number of elements in send buffer
• Can reduce element-wise array -> array

– Type of data (MPI label, as before)

…

MPI Functions - Reduce

• int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

• Takes in… (continued)

– Reducing operation (special MPI labels, e.g.

MPI_SUM, MPI_MIN)

– ID of process that obtains result

– MPI communication object (as before)

MPI Example

int main(int argc, char **argv) {
int rank, numprocs;

MPI_Status status;
MPI_Request request;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

int tag=1234;
int source=0;
int destination=1;
int count=1;

int send_buffer;
int recv_buffer;

if(rank == source){
send_buffer=5678;
MPI_Isend(&send_buffer,count,MPI_INT,destination,tag,

MPI_COMM_WORLD,&request);
}

if(rank == destination){
MPI_Irecv(&recv_buffer,count,MPI_INT,source,tag,

MPI_COMM_WORLD,&request);
}

MPI_Wait(&request,&status);

if(rank == source){
printf("processor %d sent %d\n",rank,recv_buffer);

}
if(rank == destination){

printf("processor %d got %d\n",rank,recv_buffer);
}
MPI_Finalize();
return 0;

}

� Two processes

� Sends a number from process

0 to process 1

� Note: Both processes are

running this code!

Wave Equation – Simple Solution

• Can do this with MPI_Irecv, MPI_Isend,
MPI_Wait:

• Suppose process has rank r:
– If we’re not the rightmost process:

• Send data to process r+1

• Receive data from process r+1

– If we’re not the leftmost process:
• Send data to process r-1

• Receive data from process r-1

– Wait on requests

Wave Equation – Simple Solution

• Boundary conditions:

– Use MPI_Comm_rank and MPI_Comm_size

• Rank 0 process will set leftmost condition

• Rank (size-1) process will set rightmost condition

Simple Solution – Problems

• Communication can be expensive!

– Expensive to communicate every timestep to send

1 value!

– Better solution: Send some m values every m

timesteps!

– Tradeoff between redundant computations and

reduced network/communication overhead

• Network (MPI) case worse than the multi-GPU case!

