
CS 179: GPU Computing

Lecture 18: Simulations and 

Randomness



Simulations

South Bay Simulations, 

http://www.panix.com/~brosen/graphics/iacc.400.jpg 

Flysurfer Kiteboarding, http://www.flysurfer.com/wp-

content/blogs.dir/3/files/gallery/research-and-development/zwischenablage07.jpg

Max-Planck Institut, http://www.mpa-

garching.mpg.de/gadget/hydrosims/

Exa Corporation, http://www.exa.com/images/f16.png



Simulations

• But what if your problem is hard to solve? e.g.

– EM radiation attenuation

– Estimating complex probability distributions

– Complicated ODEs, PDEs

• (e.g. option pricing in last lecture)

– Geometric problems w/o closed-form solutions

• Volume of complicated shapes



Simulations

• Potential solution: Monte Carlo methods

– Run simulation with randomly chosen inputs

• (Possibly according to some distribution)

– Do it again… and again… and again…

– Aggregate results



Monte Carlo example

• Estimating the value of π



Monte Carlo example

• Estimating the value of π

– Quarter-circle of radius r: 

• Area = (πr2)/4

– Enclosing square:

• Area = r2

– Fraction of area: π/4

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with 

Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif



Monte Carlo example

• Estimating the value of π

– Quarter-circle of radius r: 

• Area = (πr2)/4

– Enclosing square:

• Area = r2

– Fraction of area: π/4 ≈ 0.79

• “Solution”: Randomly generate lots of points, 

calculate fraction within circle

– Answer should be pretty close!

"Pi 30K" by CaitlinJo - Own workThis

mathematical image was created with 

Mathematica. Licensed under CC BY 3.0 via 

Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Pi_30K

.gif#/media/File:Pi_30K.gif



Monte Carlo example

• Pseudocode:

(simulate on N points)

(assume r = 1)

points_in_circle = 0

for i = 0,…,N-1:

randomly pick point (x,y) from

uniform distribution in [0,1]2

if (x,y) is in circle:

points_in_circle++

return (points_in_circle / N) * 4

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with 

Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif



Monte Carlo example

• Pseudocode:

(simulate on N points)

(assume r = 1)

points_in_circle = 0

for i = 0,…,N-1:

randomly pick point (x,y) from

uniform distribution in [0,1]2

if x^2 + y^2 < 1:

points_in_circle++

return (points_in_circle / N) * 4

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with 

Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif



Monte Carlo simulations

Planetary Materials Microanalysis Facility, , Northern Arizona University, 

http://www4.nau.edu/microanalysis/microprobe-

sem/Images/Monte_Carlo.jpg

Center for Air Pollution Impact & Trend Analysis, Washington University in St. 

Louis, http://www4.nau.edu/microanalysis/microprobe-

sem/Images/Monte_Carlo.jpg

http://www.cancernetwork.com/sites/default/files/cn_import/n0011bf1.jpg



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)



General Monte Carlo method

• Why it works:

– Law of large numbers!



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)

• Can we parallelize this?



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)

• Can we parallelize this?

Trials are 

independent



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)

• Can we parallelize this?

Trials are 

independentUsually so 

(e.g. with reduction)



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)

• Can we parallelize this?

Trials are 

independentUsually so 

(e.g. with reduction)

What about this?



Parallelized Random Number 

Generation



Early Credits

• Algorithm and presentation based on:

– “Parallel Random Numbers: As Easy as 1, 2, 3”

• (Salmon, Moraes, Dror, Shaw) at D. E. Shaw Research

• Developed for biomolecular simulations on Anton 

(massively parallel ASIC-based supercomputer)

• Also applicable to CPUs, GPUs



Random Number Generation

• Generating random data computationally 

is hard

– Computers are deterministic!

https://cdn.tutsplus.com/vector/uploads/legacy/tuts/165_Shiny_Dice/27.jpg



Random Number Generation

• Two methods:

– Hardware random number generator

• aka TRNG (“True” RNG)

• Uses data collected from environment (thermal, 

optical, etc)

• Very slow!

– Pseudorandom number generator (PRNG)

• Algorithm that produces “random-looking” 

numbers

• Faster – limited by computational power



Demonstration



Random Number Generation

• PRNG algorithm should be:

– High-quality

• Produce “good” random data

– Fast

• (In its own right)

– Parallelizable!

• Can we do it?

– (Assume selection from uniform distribution)



A Very Basic PRNG

• “Linear congruential generator” (LCG)

– e.g. C’s rand()

– General formula:

���� = ��� + � 		mod		

• X0 is the “seed” (e.g. system time)

//from glibc

int32_t val = state[0];
val = ((state[0] * 1103515245) + 12345) 

& 0x7fffffff;
state[0] = val;
*result = val;



A Very Basic PRNG

• “Linear congruential generator” (LCG)

– e.g. C’s rand()

– General formula:

���� = ��� + � 		mod		

//from glibc

int32_t val = state[0];
val = ((state[0] * 1103515245) + 12345) 

& 0x7fffffff;
state[0] = val;
*result = val;

Non-parallelizable 

recurrence relation!



Linear congruential generators

���� = ��� + � 		mod		

• Not high quality!

– Clearly non-uniform

• Fast to compute

• Not parallelizable!

"Lcg 3d". Licensed under CC BY-SA 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Lcg_3d.gif#/media/File:Lcg_3d.gif



Measures of RNG quality

• Impossible to prove a sequence is “random”

• Possible tests:

– Frequency

– Periodicity - do the values repeat too early?

– Linear dependence

– …



PRNG Parallelizability

• Many PRNGs (like the LCG) have a 

non-parallelizable appearance:

���� = �(��)

– (Better chance of good data when):

• All �� in some large state space

• Complicated function f



PRNG Parallelizability

• Possible “approach” to GPU parallelization:

– Assign a PRNG to each thread!

• Initialize with e.g. different X0

• Thread 0 produces sequence ����,� =	�(��,�)

• Thread 1 produces sequence ����,� =	�(��,�)

• …



PRNG Parallelizability

• Possible “approach” to GPU parallelization:

– Assign a PRNG to each thread!

• Initialize with e.g. different X0

• Thread 0 produces sequence ����,� =	�(��,�)

• Thread 1 produces sequence ����,� =	�(��,�)

• …

– In practice, often cannot get high quality

• Repeated values, lack of good, enumerable parameters



PRNG Parallelizability

• Instead of:

���� = �(��)

• Suppose we had:

���� = � �

– This is parallelizable! (Without our previous “trick”)

• Is this possible?



More General PRNG

• “Keyed” PRNG given by:

– Transition function: �: 	� → �

– Output function: �:� × � → �

• S: Internal (hidden) state space

• U: Output space

• K: “Key space”

– Can “seed” output behavior without relying on X0 alone –

useful for scientific reproducibility!



More General PRNG

• “Keyed” PRNG given by:

– Transition function: �: 	� → �

– Output function: �:� × � → �

• S: Internal (hidden) state space

• U: Output space

• K: “Key space”

– Can “seed” output behavior without relying on X0 alone –

useful for scientific reproducibility!

If S has J times more bits than 

U, can produce J outputs per 

transition.

Assume J = 1 in this lecture



More General PRNG

• “Keyed” PRNG given by:

– Transition function: �: 	� → �

– Output function: �:� × � → �

– “Trivial” example: LCG ���� = ��� + � 		mod		

• � �� = ��� + �

• � �� = ��

• S is (for example) the space of 32-bit integers

• U = S

• K is “trivial” (no keys used)



More General PRNG

• “Keyed” PRNG given by:

– Transition function: �: 	� → �

– Output function: �:� × � → �

– “Trivial” example: LCG ���� = ��� + � 		mod		

• � �� = ��� + �

• � �� = ��

• f is more complicated than g!



More General PRNG

• “Keyed” PRNG given by:

– Transition function: �: 	� → �

– Output function: �:� × � → �

– General theme: f is complicated, g is simple

• What if we flipped that?



More General PRNG

• “Keyed” PRNG given by:

– Transition function: �: 	� → �

– Output function: �:� × � → �

– General theme: f is complicated, g is simple

• What if we flipped that?

• What if f were so simple that it could be evaluated 

explicity?



More General PRNG

• i.e. what if we had:

– Simple transition function (p-bit integer state space):

� � = (� + 1)	mod	2 	

• This is just a counter! Can expand into explicit formula

� � = (� + ��)	mod	2
 	

• These form counter-based PRNGs

– Complicated output function g

• Would this work?



More General PRNG

• i.e. what if we had:

– Simple transition function f

– Complicated output function g(k, n)

• Should be bijective w/r/to n

– Guarantees period of 2p

• Shouldn’t be too difficult to compute



Bijective Functions

• Cryptographic block ciphers!

– AES (Advanced Encryption Standard), Threefish, …

– Must be bijective!

• (Otherwise messages can’t be encrypted/decrypted)



AES-128 Algorithm

• 1) Key Expansion

– Determine all keys k from initial cipher key kB

• Used to strengthen weak keys

Sohaib Majzoub and Hassan Diab, Reconfigurable 

Systems for Cryptography and Multimedia 

Applications, 

http://www.intechopen.com/source/html/38442/m

edia/image19_w.jpg



AES-128 Algorithm

• 2) Add round key

– Bitwise XOR state s with key k0

By User:Matt Crypto - Own work. Licensed under Public Domain via 

Wikimedia Commons - http://commons.wikimedia.org/wiki/File:AES-

AddRoundKey.svg#/media/File:AES-AddRoundKey.svg



AES-128 Algorithm

• 3) For each round… (10 rounds total)

– a) Substitute bytes

• Use lookup table to switch positions

By User:Matt Crypto - Own work. Licensed under Public Domain via 

Wikimedia Commons - http://commons.wikimedia.org/wiki/File:AES-

AddRoundKey.svg#/media/File:AES-AddRoundKey.svg



AES-128 Algorithm

• 3) For each round…

– b) Shift rows

By User:Matt Crypto - Own work. Licensed under Public Domain via 

Wikimedia Commons - http://commons.wikimedia.org/wiki/File:AES-

AddRoundKey.svg#/media/File:AES-AddRoundKey.svg



AES-128 Algorithm

• 3) For each round…

– c) Mix columns

• Multiply by constant matrix 

By User:Matt Crypto - Own work. Licensed under Public Domain via 

Wikimedia Commons - http://commons.wikimedia.org/wiki/File:AES-

AddRoundKey.svg#/media/File:AES-AddRoundKey.svg



AES-128 Algorithm

• 3) For each round…

– d) Add round key (as before)

By User:Matt Crypto - Own work. Licensed under Public Domain via 

Wikimedia Commons - http://commons.wikimedia.org/wiki/File:AES-

AddRoundKey.svg#/media/File:AES-AddRoundKey.svg



AES-128 Algorithm

• 4) Final round

– Do everything in normal round except mix 

columns



AES-128 Algorithm

• Summary:

– 1) Expand keys

– 2) Add round key

– 3) For each round (10 rounds total)

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

– 4) Final round: 

• (do everything except mix columns)



Algorithmic Improvements

• We have a good PRNG!

– Simple transition function f

• Counter

– Complicated output function g(k, n)

• AES-128



Algorithmic Improvements

• We have a good PRNG!

– Simple transition function f

• Counter

– Complicated output function g(k, n)

• AES-128

– High quality!

• Passes Crush test suite (more on that later)

– Parallelizable!

• f and g only depend on k, n !

– Sort of slow to compute

• AES is sort of slow without special instructions (which GPUs 
don’t have)



Algorithmic Improvements

• Can we “make AES go faster”?

– AES is a cryptographic algorithm, but we’re using it 

for PRNG

– Can we change the algorithm for our purposes?



AES-128 Algorithm

• Summary:

– 1) Expand keys

– 2) Add round key

– 3) For each round (10 rounds total)

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

– 4) Final round: 

• (do everything except mix columns)



AES-128 Algorithm

• Summary:

– 1) Expand keys

– 2) Add round key

– 3) For each round (10 rounds total)

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

– 4) Final round: 

• (do everything except mix columns)

Purpose of this step is to 

hide key from attacker 

using chosen plaintext.

Not relevant here.



AES-128 Algorithm

• Summary:

– 1) Expand keys

– 2) Add round key

– 3) For each round (10 rounds total)

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

– 4) Final round: 

• (do everything except mix columns)

Purpose of this step is to 

hide key from attacker 

using chosen plaintext.

Not relevant here.

Do we really need 

this many rounds?

Other changes?



Key Schedule Change

• Old key schedule:

– The first n bytes of the expanded key are simply the 
encryption key.

– The rcon iteration value i is set to 1

– Until we have b bytes of expanded key, we do the following 
to generate n more bytes of expanded key:

• We do the following to create 4 bytes of expanded key:
– We create a 4-byte temporary variable, t

– We assign the value of the previous four bytes in the 
expanded key to t

– We perform the key schedule core (see above) on t, with i as 
the rcon iteration value

– We increment i by 1

– We exclusive-OR t with the four-byte block n bytes before the 
new expanded key. This becomes the next 4 bytes in the 
expanded key

• We then do the following three times to create the next twelve 
bytes of expanded key:

– We assign the value of the previous 4 bytes in the expanded 
key to t

– We exclusive-OR t with the four-byte block n bytes before the 
new expanded key. This becomes the next 4 bytes in the 
expanded key

• If we are processing a 256-bit key, we do the following to 
generate the next 4 bytes of expanded key:

– We assign the value of the previous 4 bytes in the expanded 
key to t

– We run each of the 4 bytes in t through Rijndael's S-box

– We exclusive-OR t with the 4-byte block n bytes before the 
new expanded key. This becomes the next 4 bytes in the 
expanded key.

• New key schedule:

– k0 = kB

– ki+1 = ki + constant

• e.g. golden ratio

Copied from Wikipedia (Rijndael Key Schedule)



AES-128 Algorithm

• Summary:

– 1) Expand keys using simplified algorithm

– 2) Add round key

– 3) For each round (10 5 rounds total)

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

– 4) Final round: 

• (do everything except mix columns)

Other simplifications 

possible!



Algorithmic Improvements

• We have a good PRNG!

– Simple transition function f

• Counter

– Complicated output function g(k, n)

• Modified AES-128 (known as ARS-5)

– High quality!

• Passes Crush test suite (more on that later)

– Parallelizable!

• f and g only depend on k, n !

– Moderately faster to compute



Even faster parallel PRNGs

• Use a different g, e.g.

– Threefish cipher

• Optimized for PRNG – known as “Threefry”

– “Philox”

• (see paper for details)

• 202 GB/s on GTX580!

– Fastest known PRNG in existence



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)

• Can we parallelize this?

Trials are 

independentUsually so 

(e.g. with reduction)

What about this?



General Monte Carlo method

• Pseudocode:

for (number of trials):

randomly pick value from a probability distribution

perform deterministic computation on inputs

(aggregate results)

• Can we parallelize this?

– Yes!

– Part of cuRAND

Trials are 

independentUsually so 

(e.g. with reduction)

Yes!



Summary

• Monte Carlo methods

– Very useful in scientific simulations

– Parallelizable because of…

• Parallelized random number generation

– Another story of “parallel algorithm analysis”



Credits (again)

• Parallel RNG algorithm and presentation 

based on:

– “Parallel Random Numbers: As Easy as 1, 2, 3”

• (Salmon, Moraes, Dror, Shaw) at D. E. Shaw Research


