CS 179: GPU Computing

Lecture 18: Simulations and
Randomness

Simulations

Exa Corporation, http://www.exa.com/images/f16.png

South Bay Simulations,
http://www.panix.com/~brosen/graphics/iacc.400.jpg

|

1 A RS A

§ 5 e =5 - Max-Planck Institut, http://www.mpa-
Flysurfer Kiteboarding, http://www.flysurfer.com/wp- garching.mpg.de/gadget/hydrosims/
content/blogs.dir/3/files/gallery/research-and-development/zwischenablage07.jpg

Simulations

e But what if your problem is hard to solve? e.g.
— EM radiation attenuation

— Estimating complex probability distributions
— Complicated ODEs, PDEs

e (e.g. option pricing in last lecture)

— Geometric problems w/o closed-form solutions

e Volume of complicated shapes

Simulations

e Potential solution: Monte Carlo methods

— Run simulation with randomly chosen inputs

* (Possibly according to some distribution)
— Do it again... and again... and again...
— Aggregate results

Monte Carlo example

e Estimating the value of

Monte Carlo example

e Estimating the value of

n = 3000 (= 3.16667)

— Quarter-circle of radius r: e oo

e Area = (mtr?)/4
— Enclosing square:
e Area =r?

— Fraction of area: /4

Monte Carlo example

n = 3000 (71 =~ 3.16667)

e Estimating the value of
— Quarter-circle of radius r:
e Area = (mtr?)/4
— Enclosing square:

e Area =r?

— Fraction of area: /4 = 0.79 "} 0 i

e “Solution”: Randomly generate lots of points,
calculate fraction within circle

— Answer should be pretty close!

Monte Carlo example

3000 (7 = 3.16667)

e Pseudocode:

(simulate on N points)
(assume r = 1)

points_in_circle = 0
for i = 0,..,N-1:
randomly pick point (x,y) from
uniform distribution in [0,1]%
if (x,y) 1is in circle:
points_in_circle++

return (points_in_circle / N) * 4

n

Monte Carlo example

3000 (7 = 3.16667)

e Pseudocode:

(simulate on N points)
(assume r = 1)

points_in_circle = 0
for i = 0,..,N-1:
randomly pick point (x,y) from
uniform distribution in [0,1]%
if xA2 + yA2 < 1:
points_in_circle++

return (points_in_circle / N) * 4

n

Monte Carlo simulations

éFayaIite . y, ‘ . :
15keV

; : i : C1389. m
42000 nm 8000 nm 0.0!nm 800.0 nm 1200:0 nm

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution
perform deterministic computation on inputs

(aggregate results)

General Monte Carlo method

e Why it works:

— Law of large numbers!

X, = u for n — 0o,

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution
perform deterministic computation on inputs

(aggregate results)

 Can we parallelize this?

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution
perform deterministic computation on 1nputs<<5_;

== Trials are
(aggregate results) independent

 Can we parallelize this?

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution
perform deterministic computation on 1nputs<<5_;

== Trials are
(aggregate results) €= Usually so independent
(e.g. with reduction)

 Can we parallelize this?

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution e \\Nhatabout this?
perform deterministic computation on inputs S

== Trials are
(aggregate results) €= Usually so independent
(e.g. with reduction)

 Can we parallelize this?

Parallelized Random Number
Generation

Early Credits

e Algorithm and presentation based on:

— “Parallel Random Numbers: As Easy as 1, 2, 3”
e (Salmon, Moraes, Dror, Shaw) at D. E. Shaw Research

e Developed for biomolecular simulations on Anton
(massively parallel ASIC-based supercomputer)

e Also applicable to CPUs, GPUs

Random Number Generation

 Generating random data computationally
is hard

— Computers are deterministic!

R
og‘,o X
t 9

Random Number Generation

e Two methods:

— Hardware random number generator
e aka TRNG (“True” RNG)

e Uses data collected from environment (thermal,
optical, etc)

e Very slow!
— Pseudorandom number generator (PRNG)

e Algorithm that produces “random-looking”
numbers

e Faster — limited by computational power

Demonstration

Random Number Generation

e PRNG algorithm should be:
— High-quality
e Produce “good” random data
— Fast

e (In its own right)

— Parallelizable!

e Canwedo it?

— (Assume selection from uniform distribution)

A Very Basic PRNG

* “Linear congruential generator” (LCG)
—e.g. C’s rand()

//from glibc

int32_t val = state[0];

val = ((state[0] * 1103515245) + 12345)
& Ox7fffffff;

state[0] = val;

*result = val;

— General formula:

Xn+1 = (aX,, + ¢) mod m

* X, is the “seed” (e.g. system time)

A Very Basic PRNG

* “Linear congruential generator” (LCG)
—e.g. C’s rand()

//from glibc

int32_t val = state[0];

val = ((state[0] * 1103515245) + 12345)
& Ox7fffffff;

state[0] = val;

*result = val;

— General formula:
X,+1 = (aX,, + ¢) mod m

Non-parallelizable
recurrence relation!

Linear congruential generators

Xn+1 = (aX,, + ¢) mod m

* Not high quality!

— Clearly non-uniform

1.0%
0.75%

0.5%

e Fast to compute

0.07%
0.0

* Not parallelizable!

Measures of RNG quality

 Impossible to prove a sequence is “random”

e Possible tests:
— Frequency
— Periodicity - do the values repeat too early?
— Linear dependence

PRNG Parallelizability

e Many PRNGs (like the LCG) have a
non-parallelizable appearance:

Xn+1 = f(Xn)

— (Better chance of good data when):
e All X; in some large state space
e Complicated function f

PRNG Parallelizability

e Possible “approach” to GPU parallelization:
— Assign a PRNG to each thread!

* Initialize with e.g. different X,

* Thread 0 produces sequence X119 = f(Xpn0)

* Thread 1 produces sequence X411 = f (X 1)

PRNG Parallelizability

e Possible “approach” to GPU parallelization:
— Assign a PRNG to each thread!

* Initialize with e.g. different X,

* Thread 0 produces sequence X, .19 = f (Xp0)

* Thread 1 produces sequence X411 = f (X 1)

— In practice, often cannot get high quality

e Repeated values, lack of good, enumerable parameters

PRNG Parallelizability

* |nstead of:
Xnt1 = f(Xn)

e Suppose we had:
Xn+1 = b(n)

— This is parallelizable! (Without our previous “trick”)

e |s this possible?

More General PRNG

o “Keyed” PRNG given by:

— Transition function: f:5-S5
— Output function: g:KxS§5->U
e S: Internal (hidden) state space

e U: Output space
e K: “Key space”

— Can “seed” output behavior without relying on X, alone —
useful for scientific reproducibility!

More General PRNG

o “Keyed” PRNG given by:

— Transition function: f:5-S5
— Output function: g:KxS§5->U
If S has J times more bits than
 S: Internal (hidden) state space U, canproduceJoutputs per
transition.

e U: Output space

e K- ”Key space” Assume J =1 in this lecture

— Can “seed” output behavior without relying on X, alone —
useful for scientific reproducibility!

More General PRNG

e “Keyed” PRNG given by:
— Transition function: f:5-S5
— Output function: g:KxS§5->U

— “Trivial” example: LCG Xn+1 = (aX, +c) mod m
* f(Xn)zaXn+C
° g(Xn) = Xn

e Sis (for example) the space of 32-bit integers
e U=S
e Kis “trivial” (no keys used)

More General PRNG

e “Keyed” PRNG given by:
— Transition function: f:5-S5
— Output function: g:KxS§5->U

— “Trivial” example: LCG Xn+1 = (aX, +c) mod m
* f(Xn)zaXn+C
° g(Xn) = Xn

e fis more complicated than g!

More General PRNG

e “Keyed” PRNG given by:
— Transition function: f:5-S5
— Output function: g:KxS§5->U

— General theme: f is complicated, g is simple
e What if we flipped that?

More General PRNG

e “Keyed” PRNG given by:
— Transition function: f:5-S5
— Output function: g:KxS§5->U

— General theme: f is complicated, g is simple
e What if we flipped that?

 What if f were so simple that it could be evaluated
explicity?

More General PRNG

e j.e. whatif we had:

— Simple transition function (p-bit integer state space):
f(s) =(s+ 1) mod 2P

e This is just a counter! Can expand into explicit formula

f(n) = (n+ ny) mod 2P

e These form counter-based PRNGs
— Complicated output function g

e Would this work?

More General PRNG

e i.e. what if we had:
— Simple transition function f

— Complicated output function g(k, n)

e Should be bijective w/r/to n
— Guarantees period of 2P

e Shouldn’t be too difficult to compute

Bijective Functions

* Cryptographic block ciphers!
— AES (Advanced Encryption Standard), Threefish, ...

— Must be bijective!

e (Otherwise messages can’t be encrypted/decrypted)

AES-128 Algorithm

e 1) Key Expansion
— Determine all keys k from initial cipher key kg
e Used to strengthen weak keys

R — 1
1 N | ! I PHT
21. i - : T !K21
Yy - 2 | y :
_ i ! :
g Mz - : | !
| : " :
:_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_" ! I
1 h 1 :
1
1

——————————————————————

AES-128 Algorithm

e 2) Add round key
— Bitwise XOR state s with key k,

Ao | 9o,1| Qo2 | Qo3 bo,o bO,l bo,z t)o,3
Aol 9131 9:,]9; b1,0 bl, b1.2 b1,3
Aol 9 9y B3 bz,o bz, bz,z 2,3
A30|G31(93,] 933 ba,o b3, 39 ~33
ko,o I(0,1 ko,z k0,3
I(1,0 k1,1 k1,2 k1,3
I<2,0 kz, kz,z 23
k3,0 k3,1 3,3

AES-128 Algorithm

e 3) For each round... (10 rounds total)
— a) Substitute bytes

e Use lookup table to switch positions

A0 9o,1| Q02| 903 bo,o bO,l bo,z bo,3
Ai0| 91| Q12| 913 [SubBytes] b1,0 |31,1 I:)1,2 b1,3
—»

d,,] 9, b b’
A3 |83 b b’

AES-128 Algorithm

e 3) For each round...
— b) Shift rows

No
change

%)
=)
~+
—

w
N

5t

W

00| 901 902]| Go,3
a
10| 91,1] 2| 91,3
EENyauvas
20| 921|922 923
K |
30| 931|932 933

[ShiftRows]

_>

0,0| “o,1| 90,2| “0o,3
Q1| 91,2| 91,3| 94,0
Q5| 9y3(20| 93,1
933 930(934|953,

AES-128 Algorithm

e 3) For each round...

— ¢) Mix columns

: 2311
e Multiply by constant matrix |; 5 3
112 3
3112
0,2 a0,3
>
2.2 a2,3
3,2 a3,3 5
\ /
&) c(x)

AES-128 Algorithm

e 3) For each round...
— d) Add round key (as before)

Ao | 9o,1| Qo2 | Qo3 bo,o bO,l bo,z t)o,3
Aol 9131 9:,]9; b1,0 bl, b1.2 b1,3
Aol 9 9y B3 bz,o bz, bz,z 2,3
A30|G31(93,] 933 ba,o b3, 39 ~33
ko,o I(0,1 ko,z k0,3
I(1,0 k1,1 k1,2 k1,3
I<2,0 kz, kz,z 23
k3,0 k3,1 2 33

AES-128 Algorithm

e 4) Final round

— Do everything in normal round except mix
columns

AES-128 Algorithm

e Summary:
— 1) Expand keys
— 2) Add round key

— 3) For each round (10 rounds total)
e Substitute bytes
e Shift rows
e Mix columns
e Add round key
— 4) Final round:

e (do everything except mix columns)

Algorithmic Improvements

 We have a good PRNG!

— Simple transition function f

e Counter

— Complicated output function g(k, n)
e AES-128

Algorithmic Improvements

e We have a good PRNG!

— Simple transition function f
 Counter

— Complicated output function g(k, n)
» AES-128

— High quality!

e Passes Crush test suite (more on that later)
— Parallelizable!

e fand g only dependon k, n'!

e AES is sort of slow without special instructions (which GPUs
don’t have)

Algorithmic Improvements

e Can we “make AES go faster”?

— AES is a cryptographic algorithm, but we’re using it
for PRNG

— Can we change the algorithm for our purposes?

AES-128 Algorithm

e Summary:
— 1) Expand keys
— 2) Add round key

— 3) For each round (10 rounds total)
e Substitute bytes
e Shift rows
e Mix columns
e Add round key
— 4) Final round:

e (do everything except mix columns)

AES-128 Algorithm

Purpose of this step is to ¥ s
hide key from attacker

® Su mma ry: using chosen plaintext.

Not relevant here.

— 1) Expand keys
— 2) Add round key

— 3) For each round (10 rounds total)

e Substitute bytes
e Shift rows

e Mix columns
e Add round key

— 4) Final round:
e (do everything except mix columns)

AES-128 Algorithm

Purpose of this step is to B L
hide key from attacker

® Su mma ry: using chosen plaintext.

Not relevant here.

— 1) Expand keys
— 2) Add round key
— 3) For each round (10 rounds total)

e Substitute bytes Do we really need
this many rounds?

e Shift rows
e Mix columns
e Add round key

— 4) Final round:
e (do everything except mix columns)

Other changes?

Key Schedule Change

e Old key schedule: * New key schedule:

— The first n bytes of the expanded key are simply the

encryption key. k _ k
— The rcon iteration value i is set to 1 - 0 - B
— Until we have b bytes of expanded key, we do the following
to generate n more bytes of expanded key:
. We do the following to create 4 bytes of expanded key: k - k + CO n Sta nt
We create a 4-byte temporary variable, t |+ 1 |

- We assign the value of the previous four bytes in the
expanded key to t I d M4
- We perform the key schedule core (see above) on t, with i as d e . g . go e n rat I O
the rcon iteration value
- We increment i by 1
- We exclusive-OR t with the four-byte block n bytes before the
new expanded key. This becomes the next 4 bytes in the
expanded key
. We then do the following three times to create the next twelve
bytes of expanded key:
- We assign the value of the previous 4 bytes in the expanded
key to t
- We exclusive-OR t with the four-byte block n bytes before the
new expanded key. This becomes the next 4 bytes in the
expanded key
. If we are processing a 256-bit key, we do the following to
generate the next 4 bytes of expanded key:
We assign the value of the previous 4 bytes in the expanded
key to t
- We run each of the 4 bytes in t through Rijndael's S-box
- We exclusive-OR t with the 4-byte block n bytes before the
new expanded key. This becomes the next 4 bytes in the
expanded key.

AES-128 Algorithm

e Summary:
— 1) Expand keys using simplified algorithm
— 2) Add round key

— 3) For each round (40 5 rounds total)
e Substitute bytes
e Shift rows
 Mix columns
e Add round key
. Other simplifications
— 4) F|na| rOund. possible!

e (do everything except mix columns)

Algorithmic Improvements

 We have a good PRNG!

— Simple transition function f
* Counter

— Complicated output function g(k, n)
e Modified AES-128 (known as ARS-5)

— High quality!

e Passes Crush test suite (more on that later)
— Parallelizable!

e fand g only depend on k, n |

Even faster parallel PRNGs

 Use a different g, e.g.

— Threefish cipher
e Optimized for PRNG — known as “Threefry”

— “Philox”
e (see paper for details)
* 202 GB/s on GTX580!

— Fastest known PRNG in existence

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution e \\Nhatabout this?
perform deterministic computation on inputs S

== Trials are
(aggregate results) €= Usually so independent
(e.g. with reduction)

 Can we parallelize this?

General Monte Carlo method

e Pseudocode:

for (number of trials):
randomly pick value from a probability distribution E—— Yes!
perform deterministic computation on inputs S

== Trials are
(aggregate results) €= Usually so independent
(e.g. with reduction)

 Can we parallelize this?

— Yes!
— Part of cuRAND

Summary

e Monte Carlo methods
— Very useful in scientific simulations

— Parallelizable because of...

e Parallelized random number generation

— Another story of “parallel algorithm analysis”

Credits (again)

e Parallel RNG algorithm and presentation
based on:

— “Parallel Random Numbers: As Easy as 1, 2, 3”

e (Salmon, Moraes, Dror, Shaw) at D. E. Shaw Research

