CS 179: GPU Computing

Lecture 18: Simulations and Randomness

Simulations

Exa Corporation, http://www.exa.com/images/f16.png

South Bay Simulations, http://www.panix.com/~brosen/graphics/iacc.400.jpg

Flysurfer Kiteboarding, http://www.flysurfer.com/wpcontent/blogs.dir/3/files/gallery/research-and-development/zwischenablage07.jpg

Max-Planck Institut, http://www.mpagarching.mpg.de/gadget/hydrosims/

Simulations

- But what if your problem is hard to solve? e.g.
 - EM radiation attenuation
 - Estimating complex probability distributions
 - Complicated ODEs, PDEs
 - (e.g. option pricing in last lecture)
 - Geometric problems w/o closed-form solutions
 - Volume of complicated shapes

Simulations

- Potential solution: Monte Carlo methods
 - Run simulation with randomly chosen inputs
 - (Possibly according to some distribution)
 - Do it again... and again... and again...
 - Aggregate results

• Estimating the value of $\boldsymbol{\pi}$

- Estimating the value of $\boldsymbol{\pi}$
 - Quarter-circle of radius r:
 - Area = $(\pi r^2)/4$
 - Enclosing square:
 - Area = r^2
 - Fraction of area: $\pi/4$

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif

- Estimating the value of $\boldsymbol{\pi}$
 - Quarter-circle of radius r:
 - Area = $(\pi r^2)/4$
 - Enclosing square:
 - Area = r^2
 - Fraction of area: $\pi/4 \approx 0.79$

- "Solution": Randomly generate lots of points, calculate fraction within circle
 - Answer should be pretty close!

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Pi_30K .gif#/media/File:Pi_30K.gif

• Pseudocode:

```
(simulate on N points)
(assume r = 1)
```

```
points_in_circle = 0
for i = 0,...,N-1:
    randomly pick point (x,y) from
        uniform distribution in [0,1]<sup>2</sup>
    if (x,y) is in circle:
        points_in_circle++
```

return (points_in_circle / N) * 4

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif

• Pseudocode:

```
(simulate on N points)
(assume r = 1)
```

```
points_in_circle = 0
for i = 0,...,N-1:
    randomly pick point (x,y) from
        uniform distribution in [0,1]<sup>2</sup>
    if x^2 + y^2 < 1:
        points_in_circle++</pre>
```

return (points_in_circle / N) * 4

"Pi 30K" by CaitlinJo - Own workThis mathematical image was created with Mathematica. Licensed under CC BY 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif

Monte Carlo simulations

Planetary Materials Microanalysis Facility, , Northern Arizona University, http://www4.nau.edu/microanalysis/microprobesem/Images/Monte_Carlo.jpg

http://www.cancernetwork.com/sites/default/files/cn_import/n0011bf1.jpg

Center for Air Pollution Impact & Trend Analysis, Washington University in St. Louis, http://www4.nau.edu/microanalysis/microprobesem/Images/Monte_Carlo.jpg

• Pseudocode:

```
for (number of trials):
```

randomly pick value from a probability distribution perform deterministic computation on inputs

(aggregate results)

• Why it works:

– Law of large numbers!

$$\overline{X}_n \to \mu \quad \text{for} \quad n \to \infty,$$

• Pseudocode:

```
for (number of trials):
```

randomly pick value from a probability distribution perform deterministic computation on inputs

(aggregate results)

• Pseudocode:

• Pseudocode:

for (number of trials): randomly pick value from a probability distribution perform deterministic computation on inputs		Trials are
(aggregate results)	Usually so (e.g. with reduction)	independent

• Pseudocode:

Parallelized Random Number Generation

Early Credits

- Algorithm and presentation based on:
 - "Parallel Random Numbers: As Easy as 1, 2, 3"
 - (Salmon, Moraes, Dror, Shaw) at D. E. Shaw Research
 - Developed for biomolecular simulations on Anton (massively parallel ASIC-based supercomputer)
 - Also applicable to CPUs, GPUs

Random Number Generation

- Generating random data computationally is hard
 - Computers are deterministic!

https://cdn.tutsplus.com/vector/uploads/legacy/tuts/165_Shiny_Dice/27.jpg

Random Number Generation

- Two methods:
 - Hardware random number generator
 - aka TRNG ("True" RNG)
 - Uses data collected from environment (thermal, optical, etc)
 - Very slow!
 - Pseudorandom number generator (PRNG)
 - Algorithm that produces "random-looking" numbers
 - Faster limited by computational power

Demonstration

Random Number Generation

- PRNG algorithm should be:
 - High-quality
 - Produce "good" random data
 - Fast
 - (In its own right)
 - Parallelizable!
- Can we do it?
 - (Assume selection from uniform distribution)

A Very Basic PRNG

"Linear congruential generator" (LCG)
 – e.g. C's rand()

//from glibc

- General formula:

$$X_{n+1} = (aX_n + c) \mod m$$

• X₀ is the "seed" (e.g. system time)

A Very Basic PRNG

"Linear congruential generator" (LCG)
 – e.g. C's rand()

//from glibc

– General formula:

$$X_{n+1} = (aX_n + c) \mod m$$

Non-parallelizable recurrence relation!

Linear congruential generators

 $X_{n+1} = (aX_n + c) \mod m$

- Not high quality!
 Clearly non-uniform
- Fast to compute
- Not parallelizable!

[&]quot;Lcg 3d". Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Lcg_3d.gif#/media/File:Lcg_3d.gif

Measures of RNG quality

- Impossible to prove a sequence is "random"
- Possible tests:
 - Frequency

. . .

- Periodicity do the values repeat too early?
- Linear dependence

• Many PRNGs (like the LCG) have a non-parallelizable appearance:

 $X_{n+1} = f(X_n)$

- (Better chance of good data when):
 - All X_i in some large state space
 - Complicated function *f*

- Possible "approach" to GPU parallelization:
 - Assign a PRNG to each thread!
 - Initialize with e.g. different X₀
 - Thread 0 produces sequence $X_{n+1,0} = f(X_{n,0})$
 - Thread 1 produces sequence $X_{n+1,1} = f(X_{n,1})$
 - ...

- Possible "approach" to GPU parallelization:
 - Assign a PRNG to each thread!
 - Initialize with e.g. different X₀
 - Thread 0 produces sequence $X_{n+1,0} = f(X_{n,0})$
 - Thread 1 produces sequence $X_{n+1,1} = f(X_{n,1})$
 - ...
 - In practice, often cannot get high quality
 - Repeated values, lack of good, enumerable parameters

• Instead of:

$$X_{n+1} = f(X_n)$$

• Suppose we had:

$$X_{n+1} = b(n)$$

This is parallelizable! (Without our previous "trick")

• Is this possible?

- "Keyed" PRNG given by:
 - Transition function: $f: S \rightarrow S$
 - Output function: $g: K \times S \rightarrow U$
 - S: Internal (hidden) state space
 - U: Output space
 - K: "Key space"
 - Can "seed" output behavior without relying on X₀ alone useful for scientific reproducibility!

- "Keyed" PRNG given by:
 - Transition function:
 - Output function:

 $f: S \to S$ $g: K \times S \to U$

- S: Internal (hidden) state space
- U: Output space
- K: "Key space"
 - Can "seed" output behavior without relying on X₀ alone useful for scientific reproducibility!

If S has J times more bits than U, can produce J outputs per transition.

Assume J = 1 in this lecture

- "Keyed" PRNG given by:
 - Transition function: $f: S \rightarrow S$
 - Output function:

 $q: K \times S \to U$

- "Trivial" example: LCG $X_{n+1} = (aX_n + c) \mod m$

•
$$f(X_n) = aX_n + c$$

•
$$g(X_n) = X_n$$

- S is (for example) the space of 32-bit integers
- U = S
- K is "trivial" (no keys used)

- "Keyed" PRNG given by:
 - Transition function: $f: S \rightarrow S$
 - Output function:

on: $f: S \to S$ $g: K \times S \to U$

– "Trivial" example: LCG

•
$$f(X_n) = aX_n + c$$

• $g(X_n) = X_n$

$$X_{n+1} = (aX_n + c) \mod m$$

• *f* is more complicated than *g*!

- "Keyed" PRNG given by:
 - Transition function: $f: S \rightarrow S$
 - Output function:

on: $f: S \to S$ $g: K \times S \to U$

- General theme: *f* is complicated, *g* is simple
 - What if we flipped that?

- "Keyed" PRNG given by:
 - Transition function: $f: S \rightarrow S$
 - Output function: $g: K \times S \rightarrow U$
 - General theme: *f* is complicated, *g* is simple
 - What if we flipped that?
 - What if f were so simple that it could be evaluated explicity?

• i.e. what if we had:

- Simple transition function (p-bit integer state space): $f(s) = (s + 1) \mod 2^p$

- This is just a counter! Can expand into explicit formula $f(n) = (n + n_0) \bmod 2^p$
- These form counter-based PRNGs
- Complicated output function g
- Would this work?

- i.e. what if we had:
 - Simple transition function f
 - Complicated output function g(k, n)
 - Should be *bijective* w/r/to n
 - Guarantees period of 2^p
 - Shouldn't be *too* difficult to compute

Bijective Functions

- Cryptographic block ciphers!
 - AES (Advanced Encryption Standard), Threefish, ...
 - Must be bijective!
 - (Otherwise messages can't be encrypted/decrypted)

- 1) Key Expansion
 - Determine all keys k from initial cipher key $k_{\rm B}$
 - Used to strengthen weak keys

• 2) Add round key

- Bitwise XOR state s with key k_0

• 3) For each round...

(10 rounds total)

- a) Substitute bytes
 - Use lookup table to switch positions

- 3) For each round...
 - b) Shift rows

- 3) For each round...
 - c) Mix columns
 - Multiply by constant matrix

- 3) For each round...
 - d) Add round key (as before)

- 4) Final round
 - Do everything in normal round except mix columns

- Summary:
 - 1) Expand keys
 - 2) Add round key
 - 3) For each round (10 rounds total)
 - Substitute bytes
 - Shift rows
 - Mix columns
 - Add round key
 - 4) Final round:
 - (do everything except mix columns)

- We have a good PRNG!
 - Simple transition function *f*
 - Counter
 - Complicated output function g(k, n)
 - AES-128

- We have a good PRNG!
 - Simple transition function f
 - Counter
 - Complicated output function g(k, n)
 - AES-128
 - High quality!
 - Passes Crush test suite (more on that later)
 - Parallelizable!
 - *f* and *g* only depend on *k*, *n* !
 - Sort of slow to compute
 - AES is sort of slow without special instructions (which GPUs don't have)

- Can we "make AES go faster"?
 - AES is a cryptographic algorithm, but we're using it for PRNG
 - Can we change the algorithm for our purposes?

- Summary:
 - 1) Expand keys
 - 2) Add round key
 - 3) For each round (10 rounds total)
 - Substitute bytes
 - Shift rows
 - Mix columns
 - Add round key
 - 4) Final round:
 - (do everything except mix columns)

• Summary:

Purpose of this step is to hide key from attacker using chosen plaintext. Not relevant here.

- 1) Expand keys
- 2) Add round key
- 3) For each round (10 rounds total)
 - Substitute bytes
 - Shift rows
 - Mix columns
 - Add round key
- 4) Final round:
 - (do everything except mix columns)

• Summary:

Purpose of this step is to hide key from attacker using chosen plaintext. Not relevant here.

- 1) Expand keys
- 2) Add round key
- 3) For each round (10 rounds total)
 - Substitute bytes
 - Shift rows
 - Mix columns
 - Add round key
- 4) Final round:
 - (do everything except mix columns)

Do we really need this many rounds?

Other changes?

Key Schedule Change

• Old key schedule:

New key schedule:

- The first n bytes of the expanded key are simply the encryption key.
- The rcon iteration value i is set to 1

•

٠

.

- Until we have b bytes of expanded key, we do the following to generate n more bytes of expanded key:
 - We do the following to create 4 bytes of expanded key:
 - We create a 4-byte temporary variable, t
 - We assign the value of the previous four bytes in the expanded key to \boldsymbol{t}
 - We perform the key schedule core (see above) on t, with i as the rcon iteration value
 - We increment i by 1
 - We exclusive-OR t with the four-byte block n bytes before the new expanded key. This becomes the next 4 bytes in the expanded key
 - We then do the following three times to create the next twelve bytes of expanded key:
 - We assign the value of the previous 4 bytes in the expanded key to t
 - We exclusive-OR t with the four-byte block n bytes before the new expanded key. This becomes the next 4 bytes in the expanded key
 - If we are processing a 256-bit key, we do the following to generate the next 4 bytes of expanded key:
 - We assign the value of the previous 4 bytes in the expanded key to t
 - We run each of the 4 bytes in t through <u>Riindael's S-box</u>
 - We exclusive-OR t with the 4-byte block n bytes before the new expanded key. This becomes the next 4 bytes in the expanded key.

 $-k_0 = k_B$

$$-k_{i+1} = k_i + \text{constant}$$

• e.g. golden ratio

Copied from Wikipedia (Rijndael Key Schedule)

- Summary:
 - 1) Expand keys using simplified algorithm
 - 2) Add round key
 - 3) For each round (10 5 rounds total)
 - Substitute bytes
 - Shift rows
 - Mix columns
 - Add round key
 - 4) Final round:
 - (do everything except mix columns)

Other simplifications possible!

- We have a good PRNG!
 - Simple transition function f
 - Counter
 - Complicated output function g(k, n)
 - Modified AES-128 (known as ARS-5)
 - High quality!
 - Passes Crush test suite (more on that later)
 - Parallelizable!
 - f and g only depend on k, n !
 - Moderately faster to compute

Even faster parallel PRNGs

- Use a different *g*, e.g.
 - Threefish cipher
 - Optimized for PRNG known as "Threefry"
 - "Philox"
 - (see paper for details)
 - 202 GB/s on GTX580!
 - Fastest known PRNG in existence

• Pseudocode:

• Pseudocode:

- Can we parallelize this?
 - Yes!
 - Part of cuRAND

Summary

- Monte Carlo methods
 - Very useful in scientific simulations
 - Parallelizable because of...
- Parallelized random number generation
 - Another story of "parallel algorithm analysis"

Credits (again)

- Parallel RNG algorithm and presentation based on:
 - "Parallel Random Numbers: As Easy as 1, 2, 3"
 - (Salmon, Moraes, Dror, Shaw) at D. E. Shaw Research