
CS 179 Lecture 17
Options Pricing
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Computational finance
Broad term, can include ideas from machine learning or 
signals processing.

One part of computational finance:
(1) How should we price things?
(2) How can we efficiently and accurately compute these 

prices?
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What is an option?
Call/put option - 
right to buy/sell something at a specific price in a given time 
period

something = asset or security
specific price = “striking price” or “exercise price”
time period is often a maturity or expiration date
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European options
European options are the simplest form of options.

Can only exercise a European option on the expiration date
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American options

An American option can be exercised at any 
time between purchase and the expiration date.
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Options pricing
How much should it cost to buy an option?

Example: GOOG currently trades for $540. How much 
would you pay to be able to sell GOOG for $400 at any 
point in the next year?

Need to make modelling assumptions about behavior of 
asset prices.
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Formalization
St - price of asset at time t, spot price
K - striking price
T - time of expiration

Value of option at maturity?

Call option: max(ST- K, 0)

Put option: max(K - ST, 0)
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American put option pricing by Black-Scholes
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Options pricing & GPUs
Sometimes options pricing has an analytic (easy to 
compute) solution.

Oftentimes not the case…

No closed form for American options under Black-Scholes 
assumptions. The rest of the lecture is on American 
options.
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Options pricing & GPUs
3 widely used schemes to price options (that can’t be 
analytically priced):

(1) Monte Carlo methods
(2) Finite differencing (differential equations, Black-

Scholes)
(3) Binomial option pricing model

All 3 ways are very different algorithmically!
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Monte Carlo methods
Monte Carlo methods approximate difficult to compute 
statistics by sampling from the generating distribution.
Let’s randomly generate asset prices over time.

Parallel Forall blog post on Monte Carlo options pricing 11

http://devblogs.nvidia.com/parallelforall/american-option-pricing-monte-carlo-simulation/
http://devblogs.nvidia.com/parallelforall/american-option-pricing-monte-carlo-simulation/


Simulated asset prices (from NVIDIA blog post)
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Besides generating the asset price paths, we also need to 
predict at which point the option would be exercised for 
each path.

The Longstaff-Schwartz algorithm uses a linear regression 
at each time-step to decide whether to exercise.
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Predicting exercise time



Monte Carlo parallelism
Run different path simulations in parallel.

Can use cuRAND for path generation and cuSOLVER for 
linear regressions.
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Pricing options with PDEs
Can model options price as a PDE in 2 variables: time and 
asset price.
Known boundary conditions at:
● time=expiration
● spot price = 0
● spot price = ∞
Price is solution to equation at time = 0.
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Black-Scholes & American options
The Black-Scholes equation dictates how option price 
changes in time and spot price. Same equation for 
European and American options.
B-S requires some stochastic calculus to derive, not going 
to go into it.
B-S used to compute analytic solution for European 
options, but boundary conditions are different for American 
options.
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Finite Differencing
Finite differencing is a simple way to numerically solve 
differential equations

Discretize the equation and solve on a grid.

Replace derivatives with approximations (use Taylor series)
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Finite differencing example

Compute value at time (n+1) from 3 different locations at 
time n. This is a sparse matrix multiplication! r depends on 
grid size in both dimensions.

Above is an “explicit” method as time (n+1) depends only 
on time n. There also implicit schemes that require solving 
a sparse linear system at both time steps.
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Finite differencing parallelization
Perform sparse matrix multiplication or sparse system 
solving on GPU.
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Binomial options pricing model diagram (from Wikipedia)
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Binomial options pricing
A dynamic programming problem with convenient 
assumptions.

At each time step, asset price goes up by factor “u” or down 
by factor “d”.

Let u * d = 1.
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(1) Assign option values to each node at expiration time
(2) Work backwards in time to assign each node an option 

value based on the values of its two children based on 
interest-discounted expected value. For American 
option, take max at each node of exercising or keeping 
option.
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Finishing binomial pricing



Parallelizing binomial pricing
Less easy than parallelizing other models because of serial 
algorithm across times.

Can use data parallelism to compute time i prices from time 
(i+1).

Can also use task parallelism to directly compute time (i-1), 
i directly from (i+1). Each (i-1) node just depends on 4 
nodes rather than 2. Repeating work isn’t illegal!
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Conclusion
GPUs are useful for option pricing and computational 
finance.

Some of these algorithms exhibit “MATLAB-parallelism”

Some parts of finance can greatly benefit from the parallel 
computing ideas we’ve discussed in this course.
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