
CS 179 Lecture 16
Logistic Regression & Parallel SGD

1



Outline
● logistic regression
● (stochastic) gradient descent
● parallelizing SGD for neural nets (with emphasis on 

Google’s distributed neural net implementation)

2



Binary classification
Goal: Classify data into one of two categories.

“Is this Yelp review of a restaurant or of a different type of 
business”?

Given: 
● training set of (data, category) aka (X, y)
● test set of (X) for which we want to estimate y

3



Logistic regression
There are many other binary classification algorithms 
(random forests, SVM, Bayesian methods), but we’ll study 
logistic regression.

4



Scalar Logistic Regression

p: probability of belonging to category 1
x: data point as n component vector
w: learned weight vector

5



Vectorized Logistic Regression

Let matrix X be n x m with each column being a seperate 
data point.

Now p is an m component vector of probabilities

6



Learning
How can we find an optimal weight vector w from our 
training set?

In what sense can w be optimal?

7



Loss functions
Weights can only be optimal with respect to some objective 
function. In general, we call this function the “loss” and we 
try to minimize it with respect to weights.

is the loss that gives logistic regression.

8



Gradient Descent
Compute the gradient of loss 
with respect to weights, and 
update weights in direction of 
negative gradient.

Repeat until you hit a local 
minima. Have to pick a step 
size.

9



Stochastic Gradient Descent (SGD)
The current formulation of gradient descent involves 
computing gradient over the entire dataset before stepping 
(called batch gradient set).

What if we pick a random data point, compute gradient for 
that point, and update the weights? Called stochastic 
gradient descent.

10



SGD advantages
● easier to implement for large datasets
● works better for non-convex loss functions
● sometimes faster (you update the gradient much earlier 

and more incrementally)

Often use SGD on a “mini-batch” rather than just a single 
point at a time. Allows higher throughput and more 
parallelization.

11



Parallelizing SGD
2 (not mutually exclusive) routes:
● parallelize computation of a single gradient (model 

parallelism)
● compute multiple gradients at once (data parallelism)

12



Model parallelism
Model parallelism is “single model with parallel 
components”.

Can generally parallelize over the mini-batch.

13



Model “MATLAB parallelism”
Many models (including logistic regression!) include matrix 
multiplication or convolution in gradient computation.

This is a good example of “MATLAB-parallelism”, scriptable 
parallel computation built on top of a few kernels

14



Model pipeline parallelism (in Google Brain neural nets)
15



Data parallelism
Run multiple copies of the model (that all share weights) on 
different data

Problem: SGD is very iterative. How do I synchronize 
updates to the weights?

16



Hogwild!
Some problems such as matrix completion have sparse 
gradients. A single output depends only on a single row 
and column of factorization.
Solution: Don’t worry about synchronization! Gradient 
updates unlikely to touch each other because of sparsity.

17



Downpour SGD from Google Brain
18



Store all weights on a “parameter server”

Each model replica fetches updated weights from server 
every n

fetch
 steps and pushes gradient to server every n

push
 

steps.

Not a lot of theoretical justification, but it works :)

19

Downpour SGD



Google Brain parallelism summary
Data parallelism - multiple model replicas communication 
with parameter server, using downpour SGD
Model pipeline parallelism - each replica consists of a 
group of machines computing parts of model
Model “MATLAB parallelism” - each part of each pipeline 
uses GPUs to process mini-batch in parallel

Check out the paper

20

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fpapers.nips.cc%2Fpaper%2F4687-large-scale-distributed-deep-networks.pdf&ei=BYdKVbCcDMLfoATzqoHwBw&usg=AFQjCNHurtmX6mluRa0PVeRtjG88Zy5YbA&sig2=FcCMwsxF_wun8XLepzdRKw&bvm=bv.92291466,d.cGU


Final thoughts
“MATLAB parallelism” is by far the simplest parallelism and 
is what you want when you have a single GPU.

Other parallelization techniques needed for bigger systems.

Keep GPUs in mind when doing machine learning, can 
often get ~10x speed-ups.

21


