CS 179: GPU Programming

Lecture 12 / Homework 4

Breadth-First Search

- Given source vertex S:
- Find min. \#edges to reach every vertex from S
- (Assume source is vertex 0)

- Sequential pseudocode:

```
let Q be a queue
Q.enqueue(source)
labe1 source as discovered
source.value <- 0
while Q is not empty
    v}\leftarrow\mathrm{ Q.dequeue()
    for all edges from v to w in G.adjacentEdges(v):
        if w is not labeled as discovered
            Q.enqueue(w)
            labe1 w as discovered, w.value <- v.value + 1
```


Alternate BFS algorithm

- New sequential pseudocode:

```
Input: Va, Ea, source (graph in "compact adjacency list" format)
Create frontier (F), visited array (X), cost array (C)
F <- (all false)
x <- (all false)
C <- (all infinity)
F[source] <- true
C[source] <- 0
while F is not all false:
Parallelizable!
```

```
    for 0 \leq i < |Va|:
```

 for 0 \leq i < |Va|:
 if F[i] is true:
 if F[i] is true:
 F[i] <- false
 X[i] <- true
 for Ea[Va[i]] \leq j < Ea[Va[i+1]]:
 if X[j] is false:
 C[j] <- C[i] + 1
 F[j] <- true
    ```

\section*{GPU-accelerated BFS}
- CPU-side pseudocode:
```

Input: Va, Ea, source (graph in "compact adjacency list" format)
Create frontier (F), visited array (X), cost array (C)
F <- (all false)
x <- (all false)
C <- (all infinity)
F[source] <- true
C[source] <- 0

```

Can represent boolean values as integers
```

while F is not all false:
call GPU kernel(F, X, C, Va, Ea)

```
- GPU-side kernel pseudocode:
```

if F[threadId] is true:
F[threadId] <- false
x[threadId] <- true
for Ea[Va[threadId]] < j < Ea[Va[threadId + 1]]:
if X[j] is false:
C[j] <- C[threadId] + 1
F[j] <- true

```

\section*{Texture Memory (and co-stars)}
- Another type of memory system, featuring:
- Spatially-cached read-only access
- Avoid coalescing worries
- Interpolation
- (Other) fixed-function capabilities
- Graphics interoperability

\section*{X-ray CT Reconstruction}

\section*{Medical Imaging}
- See inside people!
- Critically important in medicine today

"SaddlePE" by James Heilman, MD - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons
- http://commons.wikimedia.org/wiki/File:SaddlePE.PNG\#/media/File:SaddlePE.PNG

\section*{X-ray imaging (Radiography)}
- "Algorithm":
- Generate electromagnetic radiation
- Measure radiation at the "camera"
- Certain tissues are more "opaque" to X-rays
- Like photography!


\section*{Radiography limitations}
- Generates 2D image of 3D body
- What if we want a "slice" of 3D body?

vs.
- Goal: 3D reconstruction! (from multiple slices)


\section*{X-ray Computed Tomography (CT)}

http://www.cancer.gov/
"Bonereconstruction" by Original uploader was Zgyorfi at en.wikipedia - Transferred from en.wikipedia; transferred to Commons by User:Common Good using CommonsHelper.. Licensed under CC BY-SA 3.0 via Wikimedia Commons

\section*{X-ray Computed Tomography (CT)}
- Generate 2D "slice" using 3D imaging
- New imaging possibilities!
- Reconstruction less straightforward


\section*{X-ray Computed Tomography (CT)}
- "Algorithm" (per-slice):
- Take *lots* of pictures at different angles
- Each "picture" is a 1-D line
- Reconstruct the many 1-D pictures into a 2-D image
- Harder, more computationally intensive!
- 3D reconstruction requires multiple slices

\section*{Mathematical Details}
- X-ray CT (per-slice) performs a 2D X-ray transform (eq. to 2D Radon transform):
- Suppose body density represented by \(f(\vec{x})\) within 2D slice, \(\vec{x}=(x, y)\)
- Assume linear attenuation of radiation
- For each line L of radiation measured by detector:
\[
I_{\text {detect }}=I_{\text {emit }} \int_{L} f=I_{\text {emit }} \int_{\mathbb{R}} f\left(\vec{x}_{0}+t \vec{\theta}_{L}\right) d t
\]
- \(\vec{\theta}_{L}\) : a unit vector in direction of \(L\)

\section*{Mathematical Details}
\[
I_{\text {detect }}=I_{\text {emit }} \int_{L} f=I_{\text {emit }} \int_{\mathbb{R}} f\left(\vec{x}_{0}+t \vec{\theta}_{L}\right) d t
\]
- Defined as Lebesgue integral - non-oriented
- Opposite radiation direction should have same attenuation!
- Re-define as:
\[
I_{\text {detect }}=I_{\text {emit }} \int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}_{L}\right)|d t|
\]

\section*{Mathematical Details}
- For each line L of radiation measured by detector:
\[
I_{\text {detect }}=I_{\text {emit }} \int_{L} f=I_{\text {emit }} \int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}_{L}\right)|d t|
\]
- Define general X-ray transform (for all lines Lin \(\mathrm{R}^{2}\) ):
\[
(R f)(L)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}_{L}\right)|d t|
\]
- Fractional values of attenuation
\(-\vec{x}_{0}\) lies along L

\section*{Mathematical Details}
- Define general X-ray transform:
\[
\begin{aligned}
& \qquad(R f)(L)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}_{L}\right)|d t| \\
& - \text { Parameterize } \vec{\theta}=(\cos \theta, \sin \theta)
\end{aligned}
\]
- Redefine as:
\[
(R f)\left(\vec{x}_{0}, \theta\right)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}\right)|d t|
\]
- Define for \(\theta \in[0,2 \pi)\)

\section*{Mathematical Details}
\[
(R f)\left(\vec{x}_{0}, \theta\right)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}\right)|d t|
\]
- Important properties:
- Many \(\vec{x}_{0}\) are redundant!
- Symmetry: \(R f\left(\vec{x}_{0}, \theta\right)=R f\left(\vec{x}_{0}, \theta+\pi\right)\)
- Can define for \(\theta \in[0, \pi)\)

\section*{X-ray Computed Tomography (CT)}
- Redefined X-ray transform, \(\theta \in[0, \pi)\) :
\[
(R f)\left(\vec{x}_{0}, \theta\right)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}\right)|d t|
\]
- In reality:
- Only defined for some \(\theta\) !


\section*{X-ray CT Reconstruction}
- Given the results of our scan (the sinogram):
\[
(R f)\left(\vec{x}_{0}, \theta\right)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}\right)|d t|
\]
- Obtain the original data: ("density" of our body)
\[
f(x, y)
\]
- In reality:
- This is hard
- We only scanned at certain (discrete) values of \(\theta\) !
- Consequence: Perfect reconstruction is impossible!

\section*{Reconstruction}


\section*{Reconstruction}

Different \(\theta^{\prime} \mathrm{s}\)


Reconstruction
Different \(\theta\) 's


X-ray emitter

\section*{X-ray CT Reconstruction}
- Given the results of our scan (the sinogram):
\[
(R f)\left(\vec{x}_{0}, \theta\right)=\int_{-\infty}^{\infty} f\left(\vec{x}_{0}+t \vec{\theta}\right)|d t|
\]
- Obtain the original data: ("density" of our body)
\[
f(x, y)
\]
- In reality:
- This is hard
- We only scanned at certain (discrete) values of \(\theta\) !
- Consequence: Perfect reconstruction is impossible!

\section*{Imperfect Reconstruction}

10 angles of imaging
200 angles of imaging


\section*{Reconstruction}
- Simpler algorithm - backprojection
- Not quite inverse Radon transform!
- Claim: Can reconstruct image as:
\[
f_{r}(\vec{x})=\sum_{\theta}(R f)(\vec{x}, \theta)=\sum_{\theta} \int_{-\infty}^{\infty} f(\vec{x}+t \vec{\theta})|d t|
\]
- ( \(\theta\) 's where X-rays are taken)
- In other words: To reconstruct point, sum measurement along every line passing through that point

Reconstruction
Different \(\theta\) 's


X-ray emitter

\section*{Geometry Details}
- For \(\mathrm{x}_{0}\), need to find:
- At each \(\theta\), which radiation measurement corresponds to the line passing through \(\mathrm{x}_{0}\) ?

\section*{Geometry Details}


\section*{Geometry Details}


\section*{Geometry Details}


\section*{Geometry Details}


\section*{Geometry Details}


\section*{Geometry Details}


\section*{Intersection point}
- Line 1: (point-slope)
\[
\left(y_{i}-y_{0}\right)=m\left(x_{i}-x_{0}\right)
\]
- Line 2 :

Corrections
\[
y_{i}=q x_{i}
\]
- Combine and solve:
\[
x_{i}=\frac{y_{0}-m x_{0}}{q-m}, y_{i}=q x_{i}
\]

\section*{Intersection point}
- Intersection point:
\[
x_{i}=\frac{y_{0}-m x_{0}}{q-m}, \quad y_{i}=q x_{i}
\]

Corrections
- Distance from measurement centerline:
\[
d=\sqrt{x_{i}^{2}+y_{i}^{2}}
\]

\section*{Geometry Details}


\section*{Sequential pseudocode}
(input: X-ray sinogram):
(allocate output image)
\[
f_{r}(\vec{x})=\sum_{\theta}(R f)(\vec{x}, \theta)
\]
```

for all y in image:
for al1 x in image:
for all theta in sinogram:

```

Clarification: Remember not to confuse geometric \(x, y\) with pixel \(\mathrm{x}, \mathrm{y}\) !
\((0,0)\) geometrically is the center pixel of the image, and \((0,0)\) in pixel coordinates is the upper left hand corner. Image is indexed row-wise
calculate \(m\) from theta
calculate x_i, y_i from m, -1/m calculate d from x_i, y_i image \([x, y]\) += sinogram[theta, "distance"]

Correction/clarification:
- \(d\) is the distance from the center of the sinogram - remember to center index appropriately
- Use -d instead of \(d\) as appropriate (when \(-1 / m\) \(>0\) and \(\mathrm{x}_{\mathrm{l}} \mathrm{i}<0\), or if \(-1 / \mathrm{m}<0\) and x i \(>0\)

\section*{Sequential pseudocode}
(input: x-ray sinogram):
(allocate output image)
\[
f_{r}(\vec{x})=\sum_{\theta}(R f)(\vec{x}, \theta)
\]
for all \(y\) in image:
for all \(x\) in image:
for all theta in sinogram:
calculate \(m\) from theta
calculate \(x_{-} i, y_{-}\)from \(m,-1 / m\) calculate d from x_i, y_i
(corrections/clarification - image \([\mathrm{x}, \mathrm{y}]+=\) sinogram[theta, "distance"] see slide 37)

Parallelizable!
Inside loop depends
only on \(x, y\), theta

\section*{Sequential pseudocode}
(input: x-ray sinogram):
(allocate output image)
\[
f_{r}(\vec{x})=\sum_{\theta}(R f)(\vec{x}, \theta)
\]

For this assignment, only parallelize \(w / r /\) to \(x, y\)
for a11 y in image:
for all \(x\) in image:
for all theta in sinogram:
calculate \(m\) from theta
(provides lots of parallelization already, other issues)
\[
\text { calculate x_i, y_i from } m,-1 / m
\]
calculate d from x_i, y_i
(corrections/clarification - image \([\mathrm{x}, \mathrm{y}]+=\) sinogram[theta, "distance"]

\section*{Cautionary notes}
- \(y\) in an image is opposite of \(y\) geometrically!
- (Graphics/computing convention)
- Edge cases (divide-by-0):
\(-\theta=0\) :
- \(d=x_{0}\)
\(-\theta=\pi / 2\) :
- \(d=y_{0}\)

\section*{Almost a good reconstruction!}

\author{
Original
}


Reconstruction


\section*{Almost a good reconstruction!}
- "Backprojection blur"
- Similar to low-pass property of SMA (Week 1)
- We need an "anti-blur"! (opposite of Homework 1)


\section*{Almost a good reconstruction!}
- Solution:
- A "high-pass filter"
- We can get frequency info in parallelizable manner!
- (FFT, Week 3)


\section*{Almost a good reconstruction!}
- Solution:
- A "high-pass filter"
- We can get frequency info in parallelizable manner!
- (FFT, Week 3)


\section*{High-pass filtering}
- Instead of filtering on image (2D HPF):
- Filter on sinogram! (1D HPF)
- (Equivalent reconstruction by linearity)
- Use cuFFT batch feature!
- We'll use a "ramp filter"
- Retained amplitude is
linear function of frequency

- (!! Subject to change)

\section*{Almost a good reconstruction!}
- CPU-side:
(input: X-ray sinogram):
calculate FFT on sinogram using cuFFT cal1 filterKerne1 on freq-domain data Calculate IFFT on freq-domain data
-> get new sinogram
- GPU-side:
filterKernel:
Select specific freq-amplitude based on thread ID

Get new amplitude from ramp equation


\section*{GPU Hardware}
- Non-coalesced access!
- Sinogram 0, index \(\sim d_{0}\)
- Sinogram 1, index \(\sim d_{1}\)
- Sinogram 2, index \(\sim d_{2}\)
- ...


\section*{GPU Hardware}
- Non-coalesced access!
- Sinogram 0, index \(\sim d_{0}\)
- Sinogram 1, index \(\sim d_{1}\)
- Sinogram 2, index \(\sim d_{2}\)
- ...
- However:
- Accesses are 2D spatially local!


\section*{GPU Hardware}
- Solution:
- Cache sinogram in texture memory!
- Read-only (un-modified once we load it)
- Ignore coalescing
- 2D spatial caching!


\section*{Summary/pseudocode}
```

(input: X-ray sinogram)
Filter sinogram (Slide 46)
Set up 2D texture cache on sinogram (Lecture 10):
Copy to CUDA array (2D)
Set addressing mode (clamp)
Set filter mode (linear, but won't matter)
Set no normalization
Bind texture to sinogram
Calculate image backprojection (parallelize slide 39)

```
- Result: 200-250x speedup! (or more)
- Result: 200-250x speedup! (or more)



\section*{Admin}
- This topic is harder than before!
- Lots of information
- I may have missed something
- If there's anything unclear, let us know
- I can (and likely will) make additional slides/explanatory materials

\section*{Admin}
- Set 4 not out yet
- Should be by Saturday night
- (Some details in slides may change due to performance considerations)
- (Will correct and notify as necessary)
- Due date: Friday (5/1), 11:59 PM
- Office hours: (same as this week)
- Monday, 9-11 PM
- Tuesday, 7-9 PM
- Thursday, 8-10 PM

\section*{Admin}
- C/CUDA code should work on all machines
- Pre/post-processing:
- Python scripts preprocess.py, postprocess.py
- (To run Python scripts: "python <script>.py")
- Either:
- Use haru
- Install python, (optionally pip) -> numpy, scipy, matplotlib, scikit-image

\section*{Resources}
- Imaging methods:
- X-Ray CT in Nuclear Medicine
- CT Image Reconstruction (Peters, at AAPM)
- Elements of Modern Signal Processing (Candes, at Stanford)
- Proof that our algorithm works!```

