CS 179: GPU Programming

Lecture 9 / Homework 3

Recap

- Some algorithms are "less obviously parallelizable":
- Reduction
- Sorts
- FFT (and certain recursive algorithms)

Parallel FFT structure (radix-2)

cuFFT 1D example

```
```

\#define NX 262144

```
```

\#define NX 262144
cufftComplex *data_host
cufftComplex *data_host
= (cufftComplex*) malloc(sizeof(cufftComplex)*NX);
= (cufftComplex*) malloc(sizeof(cufftComplex)*NX);
cufftComplex *data_back
cufftComplex *data_back
= (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
= (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
// Get data...
// Get data...
cufftHandle plan;
cufftHandle plan;
cufftComplex *data1;
cufftComplex *data1;
cudaMalloc((void**)\&data1, sizeof(cufftComplex)*NX);
cudaMalloc((void**)\&data1, sizeof(cufftComplex)*NX);
cudaMemcpy(data1, data_host, NX*sizeof(cufftComplex), cudaMemcpyHostToDevice);
cudaMemcpy(data1, data_host, NX*sizeof(cufftComplex), cudaMemcpyHostToDevice);
/* Create a 1D FFT plan. */
/* Create a 1D FFT plan. */
int batch = 1; // Number of transforms to run
int batch = 1; // Number of transforms to run
cufftPlan1d(\&plan, NX, CUFFT_C2C, batch);
cufftPlan1d(\&plan, NX, CUFFT_C2C, batch);
/* Transform the first signal in place. */
/* Transform the first signal in place. */
cufftExecC2C(plan, data1, data1, CUFFT_FORWARD);
cufftExecC2C(plan, data1, data1, CUFFT_FORWARD);
/* Inverse transform in place. */
/* Inverse transform in place. */
cufftExecC2C(plan, data1, data1, CUFFT_INVERSE);
cufftExecC2C(plan, data1, data1, CUFFT_INVERSE);
cudaMemcpy(data_back, data1, NX*sizeof(cufftComplex), cudaMemcpyDeviceToHost);

```
```

cudaMemcpy(data_back, data1, NX*sizeof(cufftComplex), cudaMemcpyDeviceToHost);

```
```

Correction:
Remember to use cufftDestroy(plan) when finished with transforms

Today

- Homework 3
- Large-kernel convolution
- Project Introductions

Systems

- Given input signal(s), produce output signal(s)

LTI system review (Week 1)

- "Linear time-invariant" (LTI) systems
- Lots of them!
- Can be characterized entirely by "impulse response" $h[n]$
- Output given from input by convolution:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Parallelization

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- Convolution is parallelizable!
- Sequential pseudocode (ignoring boundary conditions):

```
(set al1 y[i] to 0)
For (i from 0 through x.length - 1)
    for (j from 0 through h.length - 1)
    y[i] += (appropriate terms from x and h)
```


A problem...

- This worked for small impulse responses
$-\mathrm{E} . \mathrm{g} . \mathrm{h}[\mathrm{n}], 0 \leq \mathrm{n} \leq 20$ in HW 1
- Homework 1 was "small-kernel convolution":
- (Vocab alert: Impulse responses are often called "kernels"!)

A problem...

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- Sequential runtime: $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~m}\right)$
- (n : size of x)
- (m: size of h)
- Troublesome for large m! (i.e. large impulse responses)

```
(set al1 y[i] to 0)
For (i from 0 through x.length - 1)
    for (j from 0 through h.1ength - 1)
                        y[i] += (appropriate terms from x and h)
```


DFT/FFT

- Same problem with Discrete Fourier Transform!

$$
X_{k} \stackrel{\text { def }}{=} \sum_{n=0}^{N-1} x_{n} \cdot e^{-2 \pi i k n / N}, \quad k \in \mathbb{Z}
$$

- Successfully optimized and GPU-accelerated! $-O\left(n^{2}\right)$ to $O(n \log n)$
- Can we do the same here?

"Circular" convolution

"Circular" convolution

- Linear convolution:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- Circular convolution:

$$
y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]
$$

Example:

- $x[0 . .3], \mathrm{h}[0 . .1]$
- Linear convolution:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

$$
\begin{aligned}
& y[0]=x[0] h[0] \\
& y[1]=x[0] h[1]+x[1] h[0] \\
& y[2]=x[1] \mathrm{h}[1]+x[2] \mathrm{h}[0] \\
& y[3]=x[2] \mathrm{h}[1]+x[3] \mathrm{h}[0] \\
& y[4]=x[3] \mathrm{h}[1]+x[4] \mathrm{h}[0]
\end{aligned}
$$

- Circular convolution: $\begin{gathered}y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N] \\ y[0]=x[0] \mathrm{h}[0]+\mathrm{x}[3] \mathrm{h}[1] \times x[2] \mathrm{h}[2]+\mathrm{x}[3] \mathrm{h}[1]\end{gathered}$ $y[1]=x[0] h[1]+x[1] \mathrm{h}[0)+x[2] \mathrm{h}[3]+x[3] \mathrm{h}[2]$ $y[2]=x[1] h[1]+x[2] h[0]+x[3] h[3]+x[0] h[2]$ $y[3]=x[2] h[1]+x[3] h[0] \sim[0] h[3]+x[1] h[2]$

Circular Convolution Theorem*

$$
y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]
$$

- Can be calculated by: IFFT(FFT(x) .* FFT(h))
- i.e.

$$
\begin{aligned}
& \vec{X}=F F T(\vec{x}) \\
& \vec{H}=F F T(\vec{h})
\end{aligned}
$$

- For all i:

$$
Y_{i}=X_{i} H_{i}
$$

- Then:

$$
\vec{y}=\operatorname{IFFT}(\vec{Y})
$$

Circular Convolution Theorem*

$$
y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]
$$

- Can be calculated by: IFFT(FFT(x) .* FFT(h))
- i.e.

$$
\begin{array}{ll}
\vec{X}=F F T(\vec{x}) & O(\mathrm{n} \log \mathrm{n}) \text { Assumen>m } \\
\vec{H}=F F T(\vec{h}) & \mathrm{O}(\mathrm{~m} \log \mathrm{~m})
\end{array}
$$

- For all i:

$$
\begin{equation*}
Y_{i}=X_{i} H_{i} \tag{n}
\end{equation*}
$$

Total:
$O(n \log n)$

$$
\vec{y}=\operatorname{IFFT}(\vec{Y}) \quad \mathrm{O}(\mathrm{n} \log \mathrm{n})
$$

* DFT case
- $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ are different lengths?
- How to linearly convolve using circular convolution?

Padding

- $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ - presumed zero where not defined
- Computationally: Store $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ as larger arrays
- Pad both to at least x.length + h.length - 1

Example: (Padding)

- $x[0 . .3], \mathrm{h}[0 . .1]$
- Linear convolution:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

$$
\begin{aligned}
& y[0]=x[0] h[0] \\
& y[1]=x[0] h[1]+x[1] h[0] \\
& y[2]=x[1] \mathrm{h}[1]+x[2] \mathrm{h}[0] \\
& y[3]=x[2] \mathrm{h}[1]+x[3] \mathrm{h}[0] \\
& y[4]=x[3] \mathrm{h}[1]+x[4] \mathrm{h}[0]
\end{aligned}
$$

- Circular convolution: $\begin{aligned} & y[n]=\sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]\end{aligned}$

$$
\begin{aligned}
& \mathrm{y}[0]=\mathrm{x}[0] \mathrm{h}[0]+\mathrm{x}[1] \mathrm{h}[4]+\mathrm{x}[2] \mathrm{h}[3]+\mathrm{x}[3] \mathrm{h}[2]+\mathrm{x}[4] \mathrm{h}[1] \\
& \mathrm{y}[1]=\mathrm{x}[0] \mathrm{h}[1]+\mathrm{x}[1] \mathrm{h}[0]+\mathrm{x}[2] \mathrm{h}[4]+\mathrm{x}[3] \mathrm{h}[3]+\mathrm{x}[4] \mathrm{h}[2] \\
& \mathrm{y}[2]=\mathrm{x}[1] \mathrm{h}[1]+\mathrm{x}[2 \mathrm{]h}[0]+\mathrm{x}[3 \mathrm{hh}[4]+\mathrm{x}[4] \mathrm{h}[3]+\mathrm{x}[0] \mathrm{h}[2] \\
& \mathrm{y}[3]=\mathrm{x}[2] \mathrm{h}[1]+\mathrm{x}[3 \mathrm{~h}[0]+\mathrm{x}[4] \mathrm{h}[4]+\mathrm{x}[0] \mathrm{h}[3]+\mathrm{x}[1] \mathrm{h}[2] \\
& \mathrm{y}[4]=\mathrm{x}[3] \mathrm{h}[1]+\mathrm{x}[4] \mathrm{h}[0]+\mathrm{x}[0] \mathrm{h}[4]+\mathrm{x}[1] \mathrm{h}[3]+\mathrm{x}[2] \mathrm{h}[2]
\end{aligned}
$$

Summary

- Alternate algorithm for large impulse response convolution!
- Serial: O($\mathrm{n} \log \mathrm{n}$) vs. $\mathrm{O}(\mathrm{mn})$
- Small vs. large m determines algorithm choice
- Runtime does "carry over" to parallel situations (to some extent)

Homework 3, Part 1

- Implement FFT ("large-kernel") convolution
- Use cuFFT for FFT/IFFT (if brave, try your own)
- Use "batch" variable to save FFF calculations Correction: Good practice in general, but results in poor performance on Homework 3
- Complex multiplication kernel: Week 1-style
- (HW1 difference: Consider right-hand boundary region)

Complex numbers

- cufftComplex: cuFFT complex number type
- Example usage:

```
cufftcomplex a;
a.x = 3; // Real part
a.y = 4; // Imaginary part
```

- Element-wise multiplying:

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

Homework 3, Part 2

Normalization

- Amplitudes must lie in range [-1, 1]
- Normalize s.t. maximum magnitude is 1 (or $1-\varepsilon$)
- How to find maximum amplitude?

Reduction

- This time, maximum (instead of sum)
- Lecture 7 strategies
- "Optimizing Parallel Reduction in CUDA" (Harris)

Homework 3, Part 2

- Implement GPU-accelerated normalization
- Find maximum (reduction)
- Divide by maximum to normalize

(Demonstration)

- Rooms can be modeled as LTI systems!

Other notes

- Machines:
- Normal mode: haru, mx, minuteman
- Audio mode: haru
- Due date: Friday (4/24), 3PM

Correction: 11:59 PM

- Extra office hours: Thursday (4/23), 8-10 PM

Projects

