
CS 179: GPU Programming

Lecture 7

Week 3

• Goals:

– More involved GPU-accelerable algorithms

• Relevant hardware quirks

– CUDA libraries

Outline

• GPU-accelerated:

– Reduction

– Prefix sum

– Stream compaction

– Sorting (quicksort)

Reduction

• Find the sum of an

array:

– (Or any associative

operator, e.g. product)

• CPU code:
float sum = 0.0;

for (int i = 0; i < N; i++)

sum += A[i];

• Add two arrays

fffffffffffffffffffff

– A[] + B[] -> C[]

fffffffffffffffffffffffff

• CPU code:
float *C = malloc(N * sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

• Find the sum of an

array:

– (Or any associative

operator, e.g. product)

• CPU code:
float sum = 0.0;

for (int i = 0; i < N; i++)

sum += A[i];

Reduction vs. elementwise add

Add two arrays

(multithreaded pseudocode)

(allocate memory for C)

(create threads, assign
indices)

...

In each thread,
for (i from beginning region of
thread)

C[i] <- A[i] + B[i]

Wait for threads to
synchronize...

f

Sum of an array

(multithreaded pseudocode)

(set sum to 0.0)

(create threads, assign
indices)

...

In each thread,
(Set thread_sum to 0.0)

for (i from beginning region of
thread)

thread_sum += A[i]

“return” thread_sum

Wait for threads to
synchronize...

for j = 0,…,#threads-1:
sum += (thread j’s sum)

Reduction vs. elementwise add

Add two arrays

(multithreaded pseudocode)

(allocate memory for C)

(create threads, assign
indices)

...

In each thread,
for (i from beginning region of
thread)

C[i] <- A[i] + B[i]

Wait for threads to
synchronize...

f

Sum of an array

(multithreaded pseudocode)

(set sum to 0.0)

(create threads, assign
indices)

...

In each thread,
(Set thread_sum to 0.0)

for (i from beginning region of
thread)

thread_sum += A[i]

“return” thread_sum

Wait for threads to
synchronize...

for j = 0,…,#threads-1:
sum += (thread j’s sum)

Serial recombination!

Reduction vs. elementwise add

Sum of an array

(multithreaded pseudocode)

(set sum to 0.0)

(create threads, assign
indices)

...

In each thread,
(Set thread_sum to 0.0)

for (i from beginning region of
thread)

thread_sum += A[i]

“return” thread_sum

Wait for threads to
synchronize...

for j = 0,…,#threads-1:
sum += (thread j’s sum)

Serial recombination!

• Serial recombination has

greater impact with more

threads

• CPU – no big deal

• GPU – big deal

Reduction vs. elementwise add (v2)

Add two arrays

(multithreaded pseudocode)

(allocate memory for C)

(create threads, assign
indices)

...

In each thread,
for (i from beginning region of
thread)

C[i] <- A[i] + B[i]

Wait for threads to
synchronize...

f

Sum of an array

(multithreaded pseudocode)

(set sum to 0.0)

(create threads, assign
indices)

...

In each thread,
(Set thread_sum to 0.0)

for (i from beginning region of
thread)

thread_sum += A[i]

Atomically add thread_sum to sum

Wait for threads to
synchronize...

1

Reduction vs. elementwise add (v2)

Add two arrays

(multithreaded pseudocode)

(allocate memory for C)

(create threads, assign
indices)

...

In each thread,
for (i from beginning region of
thread)

C[i] <- A[i] + B[i]

Wait for threads to
synchronize...

f

Sum of an array

(multithreaded pseudocode)

(set sum to 0.0)

(create threads, assign
indices)

...

In each thread,
(Set thread_sum to 0.0)

for (i from beginning region of
thread)

thread_sum += A[i]

Atomically add thread_sum to sum

Wait for threads to
synchronize...

1

Serialized access!

Naive reduction

• Suppose we wished to accumulate our

results…

Naive reduction

• Suppose we wished to accumulate our

results…

Thread-unsafe!

Naive (but correct) reduction

GPU threads in naive reduction

http://telegraph.co.uk/

Shared memory accumulation

Shared memory accumulation (2)

“Binary tree” reduction

One thread atomicAdd’s

this to global result

“Binary tree” reduction

Use __syncthreads()

before proceeding!

“Binary tree” reduction

• Divergence!

– Uses twice as many warps as necessary!

Non-divergent reduction

• Bank conflicts!

– 1st iteration: 2-way,

– 2nd iteration: 4-way (!), …

Non-divergent reduction

Sequential addressing

Reduction

• More improvements possible

– “Optimizing Parallel Reduction in CUDA” (Harris)

• Code examples!

• Moral:

– Different type of GPU-accelerized problems

• Some are “parallelizable” in a different sense

– More hardware considerations in play

Outline

• GPU-accelerated:

– Reduction

– Prefix sum

– Stream compaction

– Sorting (quicksort)

Prefix Sum

• Given input sequence x[n], produce sequence

� � = �� �
�

�	

– e.g. x[n] = (1, 2, 3, 4, 5, 6)

-> y[n] = (1, 3, 6, 10, 15, 21)

• Recurrence relation:

� � = � � − 1 + � �

Prefix Sum

• Given input sequence x[n], produce sequence

� � = �� �
�

�	

– e.g. x[n] = (1, 1, 1, 1, 1, 1, 1)

-> y[n] = (1, 2, 3, 4, 5, 6, 7)

– e.g. x[n] = (1, 2, 3, 4, 5, 6)

-> y[n] = (1, 3, 6, 10, 15, 21)

Prefix Sum

• Recurrence relation:

� � = � � − 1 + � �

– Is it parallelizable? Is it GPU-accelerable?

• Recall:

– � � = � � + � � − 1 +⋯+ �[� − � − 1]
» Easily parallelizable!

– � � = � ∙ � � + 1 − � ∙ � � − 1
» Not so much

Prefix Sum

• Recurrence relation:

� � = � � − 1 + � �

– Is it parallelizable? Is it GPU-accelerable?

• Goal:

– Parallelize using a “reduction-like” strategy

Prefix Sum sample code (up-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 26]

[1, 3, 3, 7, 5, 11, 7, 15]

[1, 2, 3, 4, 5, 6, 7, 8]

Original array

We want:

[0, 1, 3, 6, 10, 15, 21, 28]
(University of Michigan EECS,

http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum sample code (down-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 0]

[1, 3, 3, 0, 5, 11, 7, 10]

[1, 0, 3, 3, 5, 10, 7, 21]

[0, 1, 3, 6, 10, 15, 21, 28]

Final result

Original: [1, 2, 3, 4, 5, 6, 7, 8]

(University of Michigan EECS,

http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum (Up-Sweep)

Original

array

Use __syncthreads()

before proceeding!

(University of Michigan EECS,

http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum (Down-Sweep)

Final

result

Use __syncthreads()

before proceeding!

(University of Michigan EECS,

http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix sum

• Bank conflicts!

– 2-way, 4-way, …

Prefix sum

• Bank conflicts!

– 2-way, 4-way, …

– Pad addresses!

(University of Michigan EECS,

http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

• Why does the prefix sum matter?

Outline

• GPU-accelerated:

– Reduction

– Prefix sum

– Stream compaction

– Sorting (quicksort)

Stream Compaction

• Problem:

– Given array A, produce subarray of A defined by

boolean condition

– e.g. given array:

• Produce array of numbers > 3

2 5 1 4 6 3

5 4 6

Stream Compaction

• Given array A:

– GPU kernel 1: Evaluate boolean condition,

• Array M: 1 if true, 0 if false

– GPU kernel 2: Cumulative sum of M (denote S)

– GPU kernel 3: At each index,

• if M[idx] is 1, store A[idx] in output at position (S[idx] - 1)

2 5 1 4 6 3

0 1 0 1 1 0

0 1 1 2 3 3

5 4 6

Outline

• GPU-accelerated:

– Reduction

– Prefix sum

– Stream compaction

– Sorting (quicksort)

GPU-accelerated quicksort

• Quicksort:

– Divide-and-conquer algorithm

– Partition array along chosen pivot point

• Pseudocode:
quicksort(A, lo, hi):

if lo < hi:

p := partition(A, lo, hi)

quicksort(A, lo, p - 1)

quicksort(A, p + 1, hi)

Sequential

version

GPU-accelerated partition

• Given array A:

– Choose pivot (e.g. 3)

– Stream compact on condition: ≤ 3

– Store pivot

– Stream compact on condition: > 3 (store with offset)

2 5 1 4 6 3

2 1

2 1 3

2 1 3 5 4 6

GPU acceleration details

• Continued partitioning/synchronization on

sub-arrays results in sorted array

Final Thoughts

• “Less obviously parallelizable” problems

– Hardware matters! (synchronization, bank

conflicts, …)

• Resources:

– GPU Gems, Vol. 3, Ch. 39

