
CS 179 Lecture 4
GPU Compute Architecture

1

This is my first lecture ever

Tell me if I’m not speaking loud enough, going
too fast/slow, etc.

Also feel free to give me lecture feedback over
email or at office hours.

2

Today
kernel<<<gridSize, blockSize>>>(arg1, arg2);

What does this actually do?

How does the GPU execute this?

Reference: CUDA Handbook, Ch 7-8
3

Compilation, runtime, drivers, etc

Interesting…
but much less useful than architecture

Maybe we’ll cover these later in term!

4

Streaming Multiprocessors

 a streaming multiprocessor (SM) ≈ a CPU

SMs have:
● registers (1000’s!)
● caches
● warp schedulers
● execution cores

GPUs have 1-20 SMs

5

Nvidia Architecture Names
Family names:
Tesla (2006) → Fermi (2010) → Kepler (2012) → Maxwell (2014)

Engineering names:
GT218 → GF110 → GK104 → GM206

Compute capabilities (CC):
1.x → 2.x → 3.x → 5.x

6

GPU → CC table here

https://developer.nvidia.com/cuda-gpus

7

GF110 SM

Warps

8

warp = group of threads that always execute
same instructions simultaneously

Single instruction multiple thread (SIMT)
programming model, similar to SIMD (D=data)

Warp size has always been 32 threads.

Why warps?

Warps require less
hardware than having each
thread act independently

OpenCL equivalent is
cooperative thread array
(CTA)

9

Warp Divergence
int idx = threadIdx.x + blockSize.x * (threadIdx.y + blockSize.y * threadidx.z);

bool branch = (idx % 32 < 16);

if (branch) {

 foo();

} else {

 bar();

}

Different branches taken within a warp.
How can GPU handle this?

10

Warp Divergence
int idx = threadIdx.x + blockSize.x * (threadIdx.y + blockSize.y * threadidx.z);

bool branch = (idx % 32 < 16);

if (branch) {

 foo();

} else {

 bar();

}

11

First the 16 threads with
branch == 1 execute foo()
while other 16 threads do
nothing

Warp Divergence
int idx = threadIdx.x + blockSize.x * (threadIdx.y + blockSize.y * threadidx.z);

bool branch = (idx % 32 < 16);

if (branch) {

 foo();

} else {

 bar();

}

12

Then the other 16 threads
execute bar() while the first
16 threads do nothing

Warp Divergence

This clearly isn’t good parallelism!

This phenomena is called “divergence”, and we
want to avoid it!

Example was 2-way divergence, could have up
to 32-way divergence :(

13

A key idea of GPU programming

Have threads in the same warp do very similar
work!

Limits divergence, helps with memory
coalescing and avoiding shared memory bank
conflicts (more on that next time)

14

Latency & Throughput

CPU = low latency, low throughput
GPU = high latency, high throughput

CPU clock = 3 GHz (3 clocks/ns)
GPU clock = 1 GHz (1 clock/ns)

15

Instruction & Memory Latency

CPU main memory latency: ~100ns ↗
GPU main memory latency: ~300ns ↗

CPU arithmetic instruction latency: ~1ns ↗
GPU arithmetic instruction latency: ~10ns ↗

GPU numbers are for Kepler; Fermi is ~2x this 16

https://gist.github.com/jboner/2841832
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://agner.org/optimize/instruction_tables.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

Hide the latency!

● Another key to GPU programming is hiding
latency.

● While one warp waits on IO or an arithmetic
instruction to finish executing, have another
warp start executing an instruction!

● More warps ⇒ hide more latency

17

Chairlifts hide latency!
18

Warps execute on a single SM.

SM’s warp schedulers find a warp that is ready
to execute and issues it instructions.

ready to execute ⇔ next instruction doesn’t
depend on currently executing instructions.

19

SM’s execute warps

Instruction Dependencies
acc += x0;

acc += x1;

acc += x2;

acc += x3;

...

20

All instructions write to same
register…

Next instruction can’t begin
executing until previous
finishes

Instruction Dependencies
acc0 += x0;

acc1 += x1;

acc0 += x2;

acc1 += x3;

…
acc = acc0 + acc1;

21

Adds to acc0 and acc1 are
independent and can run in
parallel!

This is called instruction
level parallelism (ILP)

Adding coordinates (naive)
z0 = x[0] + y[0];

z1 = x[1] + y[1];

22

x0 = x[0];
y0 = y[0];
z0 = x0 + y0;

x1 = x[1];
y1 = y[1];

z1 = x1 + y1;

COMPILATION

How is this “assembly” sub-optimal?

Adding coordinates (ILP)
z0 = x[0] + y[0];

z1 = x[1] + y[1];

23

x0 = x[0];
y0 = y[0];
x1 = x[1];
y1 = y[1];

z0 = x0 + y0;

z1 = x1 + y1;

BETTER COMPILATION

Instruction ordering impacts performance

Warp Schedulers

Warp schedulers find a warp that is ready to
execute its next instruction and available
execution cores and then start execution.

GK110: 4 warp schedulers, 2 dispatchers each.
Starts instructions in up to 4 warps each clock,
and starts up to 2 instructions in each warp.

24

Grid, blocks?

Grid has nothing to do with execution.

Each block executes on a single SM (but a SM
can execute multiple blocks concurrently)

Shape of threads in block has nothing to do
with execution.

25

GK110 (Kepler) numbers

26

● max threads / SM = 2048 (64 warps)
● max threads / block = 1024 (32 warps)
● 32 bit registers / SM = 64k
● max shared memory / SM = 48KB
The number of blocks that run concurrently on
a SM depends on the resource requirements of
the block!

Occupancy

occupancy = warps per SM / max warps per SM

max warps / SM depends only on GPU

warps / SM depends on warps / block,
registers / block, shared memory / block.

27

GK110 Occupancy picture

100% occupancy
● 2 blocks of 1024

threads
● 32 registers/thread
● 24KB of shared

memory / block

28

50% occupancy
● 1 block of 1024

threads
● 64 registers/thread
● 48KB of shared

memory / block

Next time

We’ve looked at compute architecture…

Memory IO also has a huge effect on
performance

Learn about memory systems on Wednesday

29

