
CS 179 Lecture 4
GPU Compute Architecture
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This is my first lecture ever

Tell me if I’m not speaking loud enough, going 
too fast/slow, etc.

Also feel free to give me lecture feedback over 
email or at office hours.
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Today
kernel<<<gridSize, blockSize>>>(arg1, arg2);

What does this actually do?

How does the GPU execute this?

Reference: CUDA Handbook, Ch 7-8
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Compilation, runtime, drivers, etc

Interesting…
but much less useful than architecture

Maybe we’ll cover these later in term! 
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Streaming Multiprocessors

 a streaming multiprocessor (SM) ≈ a CPU

SMs have:
● registers (1000’s!)
● caches
● warp schedulers
● execution cores

GPUs have 1-20 SMs
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Nvidia Architecture Names
Family names:
Tesla (2006) → Fermi (2010) → Kepler (2012) → Maxwell (2014)

Engineering names:
GT218 → GF110 → GK104 → GM206

Compute capabilities (CC):
1.x → 2.x → 3.x → 5.x
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GPU → CC table here

https://developer.nvidia.com/cuda-gpus
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GF110 SM



Warps
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warp = group of threads that always execute 
same instructions simultaneously

Single instruction multiple thread (SIMT) 
programming model, similar to SIMD (D=data)

Warp size has always been 32 threads.



Why warps?

Warps require less 
hardware than having each 
thread act independently

OpenCL equivalent is 
cooperative thread array 
(CTA)
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Warp Divergence
int idx = threadIdx.x + blockSize.x * (threadIdx.y + blockSize.y * threadidx.z);

bool branch = (idx % 32 < 16);

if (branch) {

   foo();

} else {

   bar();

}

Different branches taken within a warp.
How can GPU handle this?
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Warp Divergence
int idx = threadIdx.x + blockSize.x * (threadIdx.y + blockSize.y * threadidx.z);

bool branch = (idx % 32 < 16);

if (branch) {

   foo();

} else {

   bar();

}
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First the 16 threads with 
branch == 1 execute foo() 
while other 16 threads do 
nothing



Warp Divergence
int idx = threadIdx.x + blockSize.x * (threadIdx.y + blockSize.y * threadidx.z);

bool branch = (idx % 32 < 16);

if (branch) {

   foo();

} else {

   bar();

}
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Then the other 16 threads 
execute bar() while the first 
16 threads do nothing



Warp Divergence

This clearly isn’t good parallelism!

This phenomena is called “divergence”, and we 
want to avoid it!

Example was 2-way divergence, could have up 
to 32-way divergence :(
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A key idea of GPU programming

Have threads in the same warp do very similar 
work!

Limits divergence, helps with memory 
coalescing and avoiding shared memory bank 
conflicts (more on that next time)
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Latency & Throughput

CPU = low latency, low throughput
GPU = high latency, high throughput

CPU clock = 3 GHz (3 clocks/ns)
GPU clock = 1 GHz (1 clock/ns)
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Instruction & Memory Latency

CPU main memory latency: ~100ns ↗
GPU main memory latency: ~300ns ↗

CPU arithmetic instruction latency: ~1ns ↗
GPU arithmetic instruction latency: ~10ns ↗

GPU numbers are for Kepler; Fermi is ~2x this 16

https://gist.github.com/jboner/2841832
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://agner.org/optimize/instruction_tables.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf


Hide the latency!

● Another key to GPU programming is hiding 
latency.

● While one warp waits on IO or an arithmetic 
instruction to finish executing, have another 
warp start executing an instruction!

● More warps ⇒ hide more latency
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Chairlifts hide latency!
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Warps execute on a single SM.

SM’s warp schedulers find a warp that is ready 
to execute and issues it instructions.

ready to execute ⇔ next instruction doesn’t 
depend on currently executing instructions.
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SM’s execute warps



Instruction Dependencies
acc += x0;

acc += x1;

acc += x2;

acc += x3;

...
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All instructions write to same 
register…

Next instruction can’t begin 
executing until previous 
finishes



Instruction Dependencies
acc0 += x0;

acc1 += x1;

acc0 += x2;

acc1 += x3;

…
acc = acc0 + acc1;
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Adds to acc0 and acc1 are 
independent and can run in 
parallel!

This is called instruction 
level parallelism (ILP)



Adding coordinates (naive)
z0 = x[0] + y[0];

z1 = x[1] + y[1];
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x0 = x[0];
y0 = y[0];
z0 = x0 + y0;

x1 = x[1];
y1 = y[1];

z1 = x1 + y1;

COMPILATION

How is this “assembly” sub-optimal?



Adding coordinates (ILP)
z0 = x[0] + y[0];

z1 = x[1] + y[1];
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x0 = x[0];
y0 = y[0];
x1 = x[1];
y1 = y[1];

z0 = x0 + y0;

z1 = x1 + y1;

BETTER COMPILATION

Instruction ordering impacts performance



Warp Schedulers

Warp schedulers find a warp that is ready to 
execute its next instruction and available 
execution cores and then start execution.

GK110: 4 warp schedulers, 2 dispatchers each.
Starts instructions in up to 4 warps each clock,
and starts up to 2 instructions in each warp.
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Grid, blocks?

Grid has nothing to do with execution.

Each block executes on a single SM (but a SM 
can execute multiple blocks concurrently)

Shape of threads in block has nothing to do 
with execution.
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GK110 (Kepler) numbers

26

● max threads / SM = 2048 (64 warps)
● max threads / block = 1024 (32 warps)
● 32 bit registers / SM = 64k
● max shared memory / SM = 48KB
The number of blocks that run concurrently on 
a SM depends on the resource requirements of 
the block!



Occupancy

occupancy = warps per SM / max warps per SM

max warps / SM depends only on GPU

warps / SM depends on warps / block,    
registers / block, shared memory / block.
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GK110 Occupancy picture

100% occupancy
● 2 blocks of 1024 

threads
● 32 registers/thread
● 24KB of shared 

memory / block

28

50% occupancy
● 1 block of 1024 

threads
● 64 registers/thread
● 48KB of shared 

memory / block



Next time

We’ve looked at compute architecture…

Memory IO also has a huge effect on 
performance

Learn about memory systems on Wednesday
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