CS 179: GPU Computing

Lecture 3 / Homework 1

Recap

- Adding two arrays... a close look
 - Memory:
 - Separate memory space, cudaMalloc(), cudaMemcpy(),
 ...
 - Processing:
 - Groups of threads (grid, blocks, warps)
 - Optimal parameter choice (#blocks, #threads/block)
 - Kernel practices:
 - Robust handling of workload (beyond 1 thread/index)

Parallelization

• What are parallelizable problems?

Parallelization

• What are parallelizable problems?

- Simple shading:

for all pixels (i,j):

replace previous color with new color according to rules

- Adding two arrays:

for (int i = 0; i < N; i++)
 C[i] = A[i] + B[i];</pre>

Parallelization

• What *aren't* parallelizable problems?

- Subtle differences!

Moving Averages

http://www.ligo.org

Moving Averages

Simple Moving Average

- x[n]: input (the raw signal)
- y[n]: simple moving average of x[n]
- Each point in y[n] is the average of the last K points!

Simple Moving Average

- x[n]: input (the raw signal)
- y[n]: simple moving average of x[n]
- Each point in y[n] is the average of the last K points!
 - For all n ≥ K:

$$y[n] = x[n] + x[n-1] + \dots + x[n - (K - 1)]$$

Exponential Moving Average

- Each point in y[n] follows the relation: y[0] = x[0] $y[n] = c \cdot x[n] + (1 - c) \cdot y[n - 1], 0 \le c \le 1$
- "Exponential" can expand recurrence relation:

 $y[n] = c \cdot (x[n] + (1 - c) \cdot x[n - 1] + (1 - c)^2 x[n - 2] + \dots + (1 - c)^{n - 1} x[1]) + (1 - c)^n x[0]$

 Each point in x[n] has an (exponentially) decaying influence!

- Simple moving average:
 y[n] = x[n] + x[n 1] + ··· + x[n (K 1)]
 Easily parallelizable?
- Exponential moving average: $y[n] = c \cdot x[n] + (1 - c) \cdot y[n - 1]$
 - Easily parallelizable?

- Simple moving average:
 y[n] = x[n] + x[n 1] + ··· + x[n (K 1)]
 Easily parallelizable? Yes
- Exponential moving average: $y[n] = c \cdot x[n] + (1 - c) \cdot y[n - 1]$
 - Easily parallelizable? Not so much

Simple moving average: y[n] = x[n] + x[n-1] + ... + x[n - (K - 1)] - Easily parallelizable? Yes Calculation for y[n] depends on calculation for y[n-1] !
Exponential moving average: y[n] = c · x[n] + (1 - c) · y[n - 1] - Easily parallelizable? Not so much

• SMA pseudocode:

for i = 0 through N-1
 y[n] <- x[n] + ... + x[n-(K-1)]</pre>

• EMA pseudocode:

for i = 0 through N-1 v[n] <- c*x[n] + (1-c)*v[n-1]

- Loop iteration i depends on iteration i-1 !
- Far less parallelizable!

• SMA pseudocode:

for i = 0 through N-1 y[n] <- x[n] + ... + x[n-(K-1)]

Better GPU-acceleration

• EMA pseudocode:

for i = 0 through N-1
 y[n] <- c*x[n] + (1-c)*y[n-1]</pre>

- Loop iteration i depends on iteration i-1 !
- Far less parallelizable!
- Worse GPU-acceleration

Morals

- Not all problems are parallelizable!
 - Even similar-looking problems
- Recall: *Parallel* algorithms have potential in GPU computing

Small-kernel convolution

Homework 1 (coding portion)

Signals

Example Inspiral Gravitational Waves with Noise

Sodium current from Rat small DRG neuron

Systems

Given input signal(s), produce output signal(s)

Discretization

- Discrete samplings
- of continuous signals
 - Continuous audio signal -> WAV file
 - Voltage -> Voltage every T milliseconds
- (Will focus on discrete-time signals here)

• If system has:

$$\begin{aligned} x_1[n] &\to y_1[n] \\ x_2[n] &\to y_2[n] \end{aligned}$$

• Then (for constants *a*, *b*):

 $ax_1[n] + bx_2[n] \rightarrow ay_1[n] + by_2[n]$

• Consider a *tiny piece* of the signal

- Consider a *tiny piece* of the signal...
- Delta function:

$$\delta[n-k] = \begin{cases} 1, n = k\\ 0, n \neq k \end{cases}$$

• "Signal at a point" k:

$$x[k]\delta[n-k]$$

• If we know that:

$$\delta[n-k] \to h_k[n]$$

• Then, by linearity:

$$x[k]\delta[n-k] \to x[k]h_k[n]$$

 Response at time k defined by response to delta function!

Time-invariance

• If:

 $x[n] \to y[n]$

• Then (for integer m): $x[n+m] \rightarrow y[n+m]$

Time-invariance

• If system has:

$$\begin{split} &\delta[n-k] \to h_k[n] \\ &\delta[n-l] \to h_l[n] \end{split}$$

• Then $h_k[n]$ and $h_l[n]$ are time-shifted versions of each other!

Time-invariance and linearity

Define h[n] as the *impulse response* to delta function:

 $\delta[n] \to h[n]$

• Then:

$$\delta[n-k] \to h[n-k]$$

• And by linearity: $x[k]\delta[n-k] \rightarrow x[k]h[n-k]$

Time-invariance and linearity

- Can write our original signal as: $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$
- Then, since (*last slide*): $x[k]\delta[n-k] \rightarrow x[k]h[n-k]$
- By linearity:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Morals

- "Linear time-invariant" (LTI) systems
 Lots of them!
- Can be characterized entirely by h[n]
- Output given from input by:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Convolution example

- Suppose we have input x[0..99], system given by h[0..3]
- Example output value:

y[50] = x[47]h[3] + x[48]h[2] + x[49]h[1] + x[50]h[0]

Computability

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- For *finite-duration* h[n], sum is computable with this formula
 - Computed for finite x[n], e.g. audio file
- Sum is parallelizable!
 - Sequential pseudocode (ignoring boundary conditions):

```
(set all y[i] to 0)
For (i from 0 through x.length - 1)
        for (j from 0 through h.length - 1)
        y[i] += (appropriate terms from x and h)
```

This assignment

- Accelerate this computation!
 - Fill in TODOs on assignment 1
 - Kernel implementation
 - Memory operations
 - We give the skeleton:
 - CPU implementation (a good reference!)
 - Output error checks
 - h[n] (default is Gaussian impulse response)
 - •

The code

- Framework code has two modes:
 - Normal mode (AUDIO_ON zero)
 - Generates random x[n]
 - Can run performance measurements on different sizes of x[n]
 - Can run multiple repeated trials (adjust channels parmeter)
 - Audio mode (AUDIO_ON nonzero)
 - Reads input WAV file as x[n]
 - Outputs y[n] to WAV
 - Gaussian is an imperfect *low-pass* filter high frequencies attenuated!

Demonstration

Debugging tips

- Printf
 - Beware you have many threads!
 - Set small number of threads to print
- Store intermediate results in global memory
 - Can copy back to host for inspection
- Check error returns!
 - gpuErrchk macro included wrap around function calls

Debugging tips

Use small convolution test case
 – E.g. 5-element x[n], 3-element h[n]

Compatibility

- Our machines:
 - haru.caltech.edu
 - (We'll try to get more up as the assignment progresses)
- CMS machines:
 - Only normal mode works
 - (Fine for this assignment)
- Your own system:
 - Dependencies: libsndfile (audio mode)

Administrivia

• Due date:

– Wednesday, 3 PM (correction)

- Office hours (ANB 104):
 - Kevin/Andrew: Monday, 9-11 PM
 - Eric: Tuesday, 7-9 PM