
CS 179: GPU Computing

Lecture 3 / Homework 1

Recap

• Adding two arrays… a close look

– Memory:

• Separate memory space, cudaMalloc(), cudaMemcpy(),

…

– Processing:

• Groups of threads (grid, blocks, warps)

• Optimal parameter choice (#blocks, #threads/block)

– Kernel practices:

• Robust handling of workload (beyond 1 thread/index)

Parallelization

• What are parallelizable problems?

Parallelization

• What are parallelizable problems?

• e.g.

– Simple shading:
for all pixels (i,j):

replace previous color with new color
according to rules

– Adding two arrays:
for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

Parallelization

• What aren’t parallelizable problems?

– Subtle differences!

Moving Averages

http://www.ligo.org

Moving Averages

Simple Moving Average

• x[n]: input (the raw signal)

• y[n]: simple moving average of x[n]

• Each point in y[n] is the average of the last K

points!

Simple Moving Average

• x[n]: input (the raw signal)

• y[n]: simple moving average of x[n]

• Each point in y[n] is the average of the last K

points!

– For all n ≥ K:

� � = � � + � � − 1 +⋯+ �[� −
 − 1]

Exponential Moving Average

• Each point in y[n] follows the relation:
� 0 = �[0]
� � = ∙ � � + 1 − ∙ � � − 1 , 0 ≤ ≤ 1

• “Exponential” – can expand recurrence
relation:

� � = ∙ 	� � + 1 − ∙ � � − 1 + 1 − �� � − 2 +⋯+ 1 − ���� 1 	
	+ 1 − �� 0

• Each point in x[n] has an (exponentially)
decaying influence!

Comparison

• Simple moving average:

� � = � � + � � − 1 +⋯+ �[� −
 − 1]
– Easily parallelizable?

• Exponential moving average:

� � = ∙ � � + 1 − ∙ � � − 1
– Easily parallelizable?

Comparison

• Simple moving average:

� � = � � + � � − 1 +⋯+ �[� −
 − 1]
– Easily parallelizable? Yes

• Exponential moving average:

� � = ∙ � � + 1 − ∙ � � − 1
– Easily parallelizable? Not so much

Comparison

• Simple moving average:

� � = � � + � � − 1 +⋯+ �[� −
 − 1]
– Easily parallelizable? Yes

• Exponential moving average:

� � = ∙ � � + 1 − ∙ � � − 1
– Easily parallelizable? Not so much

Calculation for y[n] depends on

calculation for y[n-1] !

Comparison

• SMA pseudocode:
for i = 0 through N-1

y[n] <- x[n] + ... + x[n-(K-1)]

• EMA pseudocode:
for i = 0 through N-1

y[n] <- c*x[n] + (1-c)*y[n-1]

– Loop iteration i depends on iteration i-1 !

– Far less parallelizable!

Comparison

• SMA pseudocode:
for i = 0 through N-1

y[n] <- x[n] + ... + x[n-(K-1)]

– Better GPU-acceleration

• EMA pseudocode:
for i = 0 through N-1

y[n] <- c*x[n] + (1-c)*y[n-1]

– Loop iteration i depends on iteration i-1 !

– Far less parallelizable!

– Worse GPU-acceleration

Morals

• Not all problems are parallelizable!

– Even similar-looking problems

• Recall: Parallel algorithms have potential in

GPU computing

Small-kernel convolution

Homework 1 (coding portion)

Signals

Systems

• Given input signal(s), produce output signal(s)

Discretization

• Discrete samplings

• of continuous signals

– Continuous audio signal -> WAV file

– Voltage -> Voltage every T milliseconds

• (Will focus on discrete-time signals here)

Linear systems

• If system has:
�� � → �� ��� � → �� �

• Then (for constants a, b):

��� � + ��� � → ��� � + ��� �

Linear systems

• Consider a tiny piece of the signal

Linear systems

• Consider a tiny piece of the signal…

• Delta function:

� � − � = �1, � = �0, � ≠ �

• “Signal at a point” k:

� � � � − �

Linear systems

• If we know that:

� � − � → ℎ� �

• Then, by linearity:

� � � � − � → �[�]ℎ� �

• Response at time k defined by response to

delta function!

Time-invariance

• If:
� � → � �

• Then (for integer m):
� � + → � � +

Time-invariance

• If system has:
� � − � → ℎ� �� � − ! → ℎ" �

• Then ℎ� � and ℎ" � are time-shifted

versions of each other!

Time-invariance and linearity

• Define ℎ � 	 as the impulse response to delta

function:
� � → ℎ �

• Then:
� � − � → ℎ � − �

• And by linearity:
�[�]� � − � → �[�]ℎ � − �

Time-invariance and linearity

• Can write our original signal as:

� � = # � � �[� − �]
$

�%�$

• Then, since (last slide):
�[�]� � − � → �[�]ℎ � − �

• By linearity:

� � = # � � ℎ[� − �]
$

�%�$

Morals

• “Linear time-invariant” (LTI) systems

– Lots of them!

• Can be characterized entirely by ℎ �

• Output given from input by:

� � = # � � ℎ[� − �]
$

�%�$

Convolution example

• Suppose we have input � 0. . 99 , system

given by ℎ 0. . 3

• Example output value:

� 50 = � 47 ℎ 3 + � 48 ℎ 2 + � 49 ℎ 1 + � 50 ℎ[0]	

Computability

� � = # � � ℎ[� − �]
$

�%�$
• For finite-duration ℎ � , sum is computable

with this formula

– Computed for finite �[�], e.g. audio file

• Sum is parallelizable!

– Sequential pseudocode (ignoring boundary
conditions):

(set all y[i] to 0)

For (i from 0 through x.length - 1)

for (j from 0 through h.length – 1)

y[i] += (appropriate terms from x and h)

This assignment

• Accelerate this computation!

– Fill in TODOs on assignment 1

• Kernel implementation

• Memory operations

– We give the skeleton:

• CPU implementation (a good reference!)

• Output error checks

• h[n] (default is Gaussian impulse response)

• …

The code

• Framework code has two modes:

– Normal mode (AUDIO_ON zero)

• Generates random x[n]

• Can run performance measurements on different sizes
of x[n]

• Can run multiple repeated trials (adjust channels
parmeter)

– Audio mode (AUDIO_ON nonzero)

• Reads input WAV file as x[n]

• Outputs y[n] to WAV

• Gaussian is an imperfect low-pass filter – high
frequencies attenuated!

Demonstration

Debugging tips

• Printf

– Beware – you have many threads!

– Set small number of threads to print

• Store intermediate results in global memory

– Can copy back to host for inspection

• Check error returns!

– gpuErrchk macro included – wrap around function

calls

Debugging tips

• Use small convolution test case

– E.g. 5-element x[n], 3-element h[n]

Compatibility

• Our machines:

– haru.caltech.edu

– (We’ll try to get more up as the assignment

progresses)

• CMS machines:

– Only normal mode works

• (Fine for this assignment)

• Your own system:

– Dependencies: libsndfile (audio mode)

Administrivia

• Due date:

– Wednesday, 3 PM (correction)

• Office hours (ANB 104):

– Kevin/Andrew: Monday, 9-11 PM

– Eric: Tuesday, 7-9 PM

