CS 179: GPU Computing

Lecture 3 / Homework 1

Recap

- Adding two arrays... a close look
- Memory:
- Separate memory space, cudaMalloc(), cudaMemcpy(),
- Processing:
- Groups of threads (grid, blocks, warps)
- Optimal parameter choice (\#blocks, \#threads/block)
- Kernel practices:
- Robust handling of workload (beyond 1 thread/index)

Parallelization

- What are parallelizable problems?

Parallelization

- What are parallelizable problems?
- e.g.
- Simple shading:

```
for all pixels (i,j):
                replace previous color with new color
                according to rules
```

- Adding two arrays:
for (int $\mathbf{i}=0 ; \mathbf{i}<\mathbf{N} ; \mathbf{i + +}$)
$C[i]=A[i]+B[i] ;$

Parallelization

- What aren't parallelizable problems?
- Subtle differences!

Moving Averages

Example Inspiral Gravitational Waves with Noise

http://www.ligo.org

Moving Averages

Simple Moving Average

- $x[n]$: input (the raw signal)
- $y[n]$: simple moving average of $x[n]$
- Each point in $\mathrm{y}[\mathrm{n}]$ is the average of the last K points!

Simple Moving Average

- $x[n]$: input (the raw signal)
- $y[n]$: simple moving average of $x[n]$
- Each point in $\mathrm{y}[\mathrm{n}]$ is the average of the last K points!
- For all $n \geq K$:

$$
y[n]=x[n]+x[n-1]+\cdots+x[n-(K-1)]
$$

Exponential Moving Average

- Each point in $\mathrm{y}[\mathrm{n}]$ follows the relation:

$$
\begin{aligned}
& y[0]=x[0] \\
& y[n]=c \cdot x[n]+(1-c) \cdot y[n-1], 0 \leq c \leq 1
\end{aligned}
$$

- "Exponential" - can expand recurrence relation:

$$
\begin{aligned}
y[n]=c \cdot & \left(x[n]+(1-c) \cdot x[n-1]+(1-c)^{2} x[n-2]+\cdots+(1-c)^{n-1} x[1]\right) \\
& +(1-c)^{n} x[0]
\end{aligned}
$$

- Each point in $x[n]$ has an (exponentially) decaying influence!

GBPCAD, h1 Spotware cTrader 12:05:49 (UTC+0) on Jul 15th, 2013

Comparison

- Simple moving average:

$$
y[n]=x[n]+x[n-1]+\cdots+x[n-(K-1)]
$$

- Easily parallelizable?
- Exponential moving average:

$$
y[n]=c \cdot x[n]+(1-c) \cdot y[n-1]
$$

- Easily parallelizable?

Comparison

- Simple moving average:

$$
\begin{aligned}
& \quad y[n]=x[n]+x[n-1]+\cdots+x[n-(K-1)] \\
& - \text { Easily parallelizable? Yes }
\end{aligned}
$$

- Exponential moving average:

$$
y[n]=c \cdot x[n]+(1-c) \cdot y[n-1]
$$

- Easily parallelizable? Not so much

Comparison

- Simple moving average:

$$
\begin{aligned}
& \quad y[n]=x[n]+x[n-1]+\cdots+x[n-(K-1)] \\
& - \text { Easily parallelizable? Yes }
\end{aligned}
$$

Calculation for $\mathrm{y}[\mathrm{n}]$ depends on calculation for $\mathrm{y}[\mathrm{n}-1]$!

- Exponential moving average:

$$
y[n]=c \cdot x[n]+(1-c) \cdot y[n-1]
$$

- Easily parallelizable?

Not so much

Comparison

- SMA pseudocode:

```
for i = 0 through N-1
y[n] <- x[n] + ... + x[n-(K-1)]
```

- EMA pseudocode:

$$
\text { for } \begin{aligned}
i= & 0 \text { through } N-1 \\
& y[n]<-c * x[n]+(1-c) * y[n-1]
\end{aligned}
$$

- Loop iteration i depends on iteration i-1 !
- Far less parallelizable!

Comparison

- SMA pseudocode:

$$
\begin{aligned}
& \text { for } i=0 \text { through } N-1 \\
& y[n]<-x[n]+\ldots+x[n-(k-1)] \\
& \text { - Better GPU-acceleration }
\end{aligned}
$$

- EMA pseudocode:

$$
\text { for } \begin{aligned}
i= & 0 \text { through } N-1 \\
& y[n]<-c * x[n]+(1-c) * y[n-1]
\end{aligned}
$$

- Loop iteration i depends on iteration i-1 !
- Far less parallelizable!
- Worse GPU-acceleration

Morals

- Not all problems are parallelizable!
- Even similar-looking problems
- Recall: Parallel algorithms have potential in GPU computing

Small-kernel convolution

Homework 1 (coding portion)

Signals

Example Inspiral Gravitational Waves with Noise

Sodium current from Rat small DRG neuron

Systems

- Given input signal(s), produce output signal(s)

Discretization

- Discrete samplings
- of continuous signals
- Continuous audio signal -> WAV file
- Voltage -> Voltage every T milliseconds
- (Will focus on discrete-time signals here)

Linear systems

- If system has:

$$
\begin{aligned}
& x_{1}[n] \rightarrow y_{1}[n] \\
& x_{2}[n] \rightarrow y_{2}[n]
\end{aligned}
$$

- Then (for constants a, b):

$$
a x_{1}[n]+b x_{2}[n] \rightarrow a y_{1}[n]+b y_{2}[n]
$$

Linear systems

- Consider a tiny piece of the signal

Linear systems

- Consider a tiny piece of the signal...
- Delta function:

$$
\delta[n-k]=\left\{\begin{array}{l}
1, n=k \\
0, n \neq k
\end{array}\right.
$$

- "Signal at a point" k :

$$
x[k] \delta[n-k]
$$

Linear systems

- If we know that:

$$
\delta[n-k] \rightarrow h_{k}[n]
$$

- Then, by linearity:

$$
x[k] \delta[n-k] \rightarrow x[k] h_{k}[n]
$$

- Response at time k defined by response to delta function!

Time-invariance

- If:

$$
x[n] \rightarrow y[n]
$$

- Then (for integer m):

$$
x[n+m] \rightarrow y[n+m]
$$

Time-invariance

- If system has:

$$
\begin{aligned}
\delta[n-k] & \rightarrow h_{k}[n] \\
\delta[n-l] & \rightarrow h_{l}[n]
\end{aligned}
$$

- Then $h_{k}[n]$ and $h_{l}[n]$ are time-shifted versions of each other!

Time-invariance and linearity

- Define $h[n]$ as the impulse response to delta function:

$$
\delta[n] \rightarrow h[n]
$$

- Then:

$$
\delta[n-k] \rightarrow h[n-k]
$$

- And by linearity:

$$
x[k] \delta[n-k] \rightarrow x[k] h[n-k]
$$

Time-invariance and linearity

- Can write our original signal as:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

- Then, since (last slide):

$$
x[k] \delta[n-k] \rightarrow x[k] h[n-k]
$$

- By linearity:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Morals

- "Linear time-invariant" (LTI) systems
- Lots of them!
- Can be characterized entirely by $h[n]$
- Output given from input by:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Convolution example

- Suppose we have input $x[0 . .99]$, system given by $h[0 . .3]$
- Example output value:

$$
y[50]=x[47] h[3]+x[48] h[2]+x[49] h[1]+x[50] h[0]
$$

Computability

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- For finite-duration $h[n]$, sum is computable with this formula
- Computed for finite $x[n]$, e.g. audio file
- Sum is parallelizable!
- Sequential pseudocode (ignoring boundary conditions):

```
(set al1 y[i] to 0)
For (i from 0 through x.length - 1)
    for (j from 0 through h.length - 1)
                                y[i] += (appropriate terms from x and h)
```


This assignment

- Accelerate this computation!
- Fill in TODOs on assignment 1
- Kernel implementation
- Memory operations
- We give the skeleton:
- CPU implementation (a good reference!)
- Output error checks
- h[n] (default is Gaussian impulse response)
- ...

The code

- Framework code has two modes:
- Normal mode (AUDIO_ON zero)
- Generates random x[n]
- Can run performance measurements on different sizes of $x[n]$
- Can run multiple repeated trials (adjust channels parmeter)
- Audio mode (AUDIO_ON nonzero)
- Reads input WAV file as x[n]
- Outputs y[n] to WAV
- Gaussian is an imperfect low-pass filter - high frequencies attenuated!

Demonstration

Debugging tips

- Printf
- Beware - you have many threads!
- Set small number of threads to print
- Store intermediate results in global memory
- Can copy back to host for inspection
- Check error returns!
- gpuErrchk macro included - wrap around function calls

Debugging tips

- Use small convolution test case
- E.g. 5-element x[n], 3-element h[n]

Compatibility

- Our machines:
- haru.caltech.edu
- (We'll try to get more up as the assignment progresses)
- CMS machines:
- Only normal mode works
- (Fine for this assignment)
- Your own system:
- Dependencies: libsndfile (audio mode)

Administrivia

- Due date:
- Wednesday, 3 PM (correction)
- Office hours (ANB 104):
- Kevin/Andrew: Monday, 9-11 PM
- Eric: Tuesday, 7-9 PM

