
CS 179: GPU Computing

Lecture 2: The Basics

Recap

• Can use GPU to solve highly parallelizable

problems

– Performance benefits vs. CPU

• Straightforward extension to C language

Disclaimer

• Goal for Week 1:

– Fast-paced introduction

– “Know enough to be dangerous”

• We will fill in details later!

Our original problem…

• Add two arrays

– A[] + B[] -> C[]

• Goal: Understand what’s going on

CUDA code (first part)

Basic “formula”

• Setup inputs on the host (CPU-accessible memory)

• Allocate memory for inputs on the GPU

• Copy inputs from host to GPU

• Allocate memory for outputs on the host

• Allocate memory for outputs on the GPU

• Start GPU kernel

• Copy output from GPU to host

“Classic” Memory Hierarchy

The GPU

The GPU

“Global memory”

Pointers

• Difference between CPU and GPU pointers?

Pointers

• Difference between CPU and GPU pointers?

– None – pointers are just addresses!

Pointers

• Difference between CPU and GPU pointers?

– None – pointers are just addresses!

– Up to the programmer to keep track!

Pointers

• Good practice:

– Special naming conventions, e.g. “dev_” prefix

Memory allocational

• With the CPU (host memory)…
float *c = malloc(N * sizeof(float));

– Attempts to allocate #bytes in argument

Memory allocation

• On the GPU (global memory):
float *dev_c;

cudaMalloc(&dev_c, N * sizeof(float));

• Signature:
cudaError_t cudaMalloc (void ** devPtr, size_t size)

– Attempts to allocate #bytes in arg2

– arg1 is the pointer to the pointer in GPU memory!

• Passed into function for modification

• Result after successful call: Memory allocated in location
given by dev_c on GPU

– Return value is error code, can be checked

Memory copying

• With the CPU (host memory)…
// pointers source,destination to memory regions

memcpy(destination, source, N);

• Signature:
void * memcpy (void * destination, const void * source, size_t num);

– Copies num bytes from (area pointed to by)

source to (area pointed to by) destination

Memory copying

• Versatile cudaMemcpy() equivalent

– CPU -> GPU

– GPU -> CPU

– GPU -> GPU

– CPU -> CPU

Memory copying

• Signature:

cudaError_t cudaMemcpy(void *destination, void *src, size_t count,

enum cudaMemcpyKind kind)

f

Memory copying

• Signature:

cudaError_t cudaMemcpy(void *destination, void *src, size_t count,

enum cudaMemcpyKind kind)

• Values:
– cudaMemcpyHostToHost

– cudaMemcpyHostToDevice

– cudaMemcpyDeviceToHost

– cudaMemcpyDeviceToDevice

• F

Memory copying

• Signature:

cudaError_t cudaMemcpy(void *destination, void *src, size_t count,

enum cudaMemcpyKind kind)

• Values:
– cudaMemcpyHostToHost

– cudaMemcpyHostToDevice

– cudaMemcpyDeviceToHost

– cudaMemcpyDeviceToDevice

• F

Determines treatment of dst.

and src. as CPU or GPU

addresses

Summary of memory

• CPU vs. GPU pointers

• cudaMalloc()

• cudaMemcpy()

Part 2

Recall…

• GPUs…

– Have lots of cores

– Are suited toward “parallel problems”

GPU internals

GPU internals

GPU internals

CPU internals

GPU internals

One instruction

unit for multiple

cores!

Warps

• Groups of threads simultaneously execute

same instructions!

– Called a “warp”

– (32 threads in a warp under current standards)

GPU internals

Blocks

• Group of threads scheduled to a multiprocessor

– Contain multiple warps

– Has a max. number (varies by GPU, e.g. 512 or 1024)

Multiprocessor execution timeline

Thread groups

• A grid (all the threads started…):

– …contains blocks <- assigned to multiprocessors

• Each block contains warps <- executed simultaneously

– Each warp contains individual threads

Part 2

• Moral 1: (from Lecture 1)

– Start lots of threads!

• Recall: Low context switch penalty

• Hide latency

– Start enough blocks!

• Occupy SMs

– e.g. Don’t call:
kernel<<<1,1>>>(); // 1 block, 1 thread per block

– Call:
kernel<<<50,512>>>();// 50 blocks, 512 threads per block

• Moral 2:

– Multiprocessors execute warps (of 32 threads)

• Block sizes of 32*n (integer n) are best

– e.g. Don’t call:
kernel<<<50,97>>>(); // 50 blocks, 97 threads per block

– Call:
kernel<<<50,128>>>();// 50 blocks, 128 threads per block

Summary (processor internals)

• Key parameters on kernel call:

– Threads per block

– Number of blocks

• Choose carefully!

Kernel argument passing

• Similar to arg-passing in C functions

• Some rules:

– Don’t pass host-memory pointers

– Small variables (e.g. individual ints) are fine

– No pass-by-reference

Kernel function

• Executed by many threads

• Threads have unique ID mechanism:

– Thread index within block

– Block index

• Out of bounds issue:

– If index > (#elements), illegal access!

• Out of bounds issue:

– If index > (#elements), illegal access!

• #Threads issue:

– Cannot start e.g. 1e9 threads!

– Threads should handle arbitrary # of elements

• #Threads issue:

– Cannot start e.g. 1e9 threads!

– Threads should handle arbitrary # of elements

• #Threads issue:

– Cannot start e.g. 1e9 threads!

– Threads should handle arbitrary # of elements

Total number of blocks

GPU ->

CPU

Host memory pointer

(copy to here)

Device memory pointer

(copy from here)

• cudaFree()

– Equivalent to host memory’s free() function

– (As on host) Free memory after completion!

Summary

• GPU global memory:

– Pointers (CPU vs GPU)

– cudaMalloc() and cudaMemcpy()

• GPU processor details:

– Thread group hierarchy

– Launch parameters

• Threads in kernel

