#### CS 179: LECTURE 17

# CONVOLUTIONAL NETS IN CUDNN

#### LAST TIME

- Motivation for convolutional neural nets
- Forward and backwards propagation algorithms for convolutional neural nets (at a high level)
- Down-sampling data using pooling operations
- Foreshadowing to how we will use cuDNN to do it

#### TODAY

- Understanding cuDNN's internal representations for convolutions and pooling objects
- Implementing convolutional nets using cuDNN

## MORE SPECIFICALLY ...

- Today, we will discuss how to use cuDNN SW to
  - Perform convolutions (can use FFT or straight computation)
  - Backpropagate gradients with respect to convolutions
  - Perform "pooling" operations for dimensionality reduction and backpropagate their gradients
- Much of this material can help HW6 -- should be a good additional resource in addition to the NVIDIA docs.

#### SW, REPRESENTING CONVOLUTIONS

- For tensors and their descriptors, we now also have cudnnFilterDescriptor\_t (to describe a conv kernel/filter) and cudnnConvolutionDescriptor\_t (to describe an actual convolution)
- We also have a cudnnPoolingDescriptor\_t to represent a "pooling" operation (max pool, mean pool, etc.)
  - See <a href="https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/">https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/</a>
- These have their own constructors, accessors, mutators, and destructors

#### RECAP: CONVOLUTIONS

- Consider a c-by-h-by-w convolutional  $\frac{\text{kernel}}{\text{kernel}}$  or  $\frac{\text{filter}}{\text{filter}}$  array K and a C-by-H-by-W array representing an  $\frac{\text{image}}{\text{kernel}}$
- The convolution (technically cross-correlation)  $\mathbf{Z} = \mathbf{K} \otimes \mathbf{X}$  is

$$\mathbf{Z}[i,j,k] = \sum_{\ell=0}^{c-1} \sum_{m=0}^{h-1} \sum_{n=0}^{w-1} \mathbf{K}[\ell,m,n] \, \mathbf{X}[i+\ell,j+m,k+n]$$

There are multiple ways to deal with boundary conditions;
 for now, ignore any indices that are out of bounds

# RECAP: CONVOLUTIONS (c = 1)

| - | 100 |     |     |     |     |   |
|---|-----|-----|-----|-----|-----|---|
| 0 | 0   | 0   | 0   | 0   | 0   |   |
| 0 | 105 | 102 | 100 | 97  | 96  |   |
| 0 | 103 | 99  | 103 | 101 | 102 | 7 |
| 0 | 101 | 98  | 104 | 102 | 100 |   |
| 0 | 99  | 101 | 106 | 104 | 99  |   |
| 0 | 104 | 104 | 104 | 100 | 98  |   |
|   |     |     |     |     |     |   |

| Kernel    | Matrix  |
|-----------|---------|
| IXCI IICI | IVIGUIA |

| 0  | -1 | 0  |
|----|----|----|
| -1 | 5  | -1 |
| 0  | -1 | 0  |

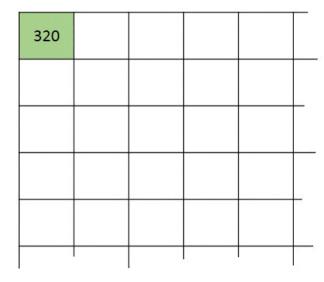


Image Matrix

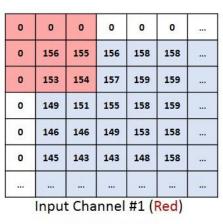
$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

**Output Matrix** 

## RECAP: CONVOLUTIONS (c = 3)



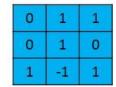
| 0 | 0   | 0   | 0   | 0   | 0   | • |
|---|-----|-----|-----|-----|-----|---|
| 0 | 167 | 166 | 167 | 169 | 169 |   |
| 0 | 164 | 165 | 168 | 170 | 170 |   |
| 0 | 160 | 162 | 166 | 169 | 170 |   |
| 0 | 156 | 156 | 159 | 163 | 168 |   |
| 0 | 155 | 153 | 153 | 158 | 168 |   |
|   |     |     |     |     |     |   |

| 0 | 0   | 0   | 0   | 0   | 0   | 3.5 |
|---|-----|-----|-----|-----|-----|-----|
| 0 | 163 | 162 | 163 | 165 | 165 |     |
| 0 | 160 | 161 | 164 | 166 | 166 |     |
| 0 | 156 | 158 | 162 | 165 | 166 |     |
| 0 | 155 | 155 | 158 | 162 | 167 |     |
| 0 | 154 | 152 | 152 | 157 | 167 |     |
|   |     |     |     |     |     |     |

Input Channel #2 (Green)

Input Channel #3 (Blue)

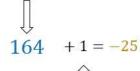
| -1 | -1 | 1  |
|----|----|----|
| 0  | 1  | -1 |
| 0  | 1  | 1  |



Kernel Channel #1

Kernel Channel #2

Kernel Channel #3



Bias = 1

Same source as last figure

Output

#### RELATION OF CONVOLUTION TO FOURIER TRANSFORM

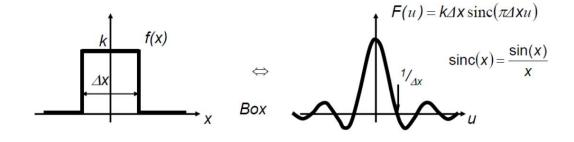
- Convolution of g and h in continuous domain defined by:
  - $lacksquare r(x) = \{g*h\}(x) riangleq \int_{-\infty}^{\infty} g( au)h(x- au)\,d au = \int_{-\infty}^{\infty} g(x- au)h( au)\,d au$
- Convolution Theorem
  - Fourier transform of convolution of two functions (or signals) is also the pointwise product of their Fourier transforms.
  - Convolution in one domain (e.g., <u>time domain</u>) equals point-wise multiplication in the other domain (e.g., <u>frequency domain</u>). On GPU we can compute convolutions using the inverse Fourier Transform! (Or not. It will be a choice!) Other choices too.

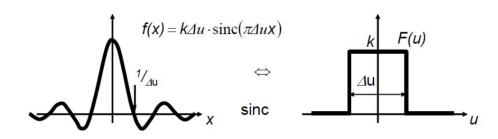
$$r(x) = \{g * h\}(x) = \mathcal{F}^{-1}\{G \cdot H\}$$

https://en.wikipedia.org/wiki/Convolution\_theorem

#### FFT, CHOICE FOR COMPUTING CONVOLUTIONS ON GPUS?

- Box Filter in one domain (frequency) is sinc function in other domain (time/space domain)
- Can cut off high frequencies by multiplying by box-like filter in frequency domain, which is same as convolving with sinc-like filter in space domain (for antialiasing on CPUs).
- FFT on GPUs gives other efficient choices for computing convolutions, for use in NNs
- See <a href="https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc|8ff5e373">https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc|8ff5e373</a>





$$\{ * h \} = \mathcal{F}^{-1} \{ \mathcal{F} \{ g \mid \} \cdot \mathcal{F} \{ h \mid \} \}$$

### SW, CONVOLUTIONAL FILTERS

- cudnnFilterDescriptor t
  - Allocate by calling cudnnCreateFilterDescriptor ( cudnnFilterDescriptor t \*filterDesc)
  - Free by calling cudnnDestroyFilterDescriptor ( cudnnFilterDescriptor t filterDesc)
  - The filter itself is just an array of numbers on the device
    - We will be using 4D arrays to store filters
    - However, this is still just a long linear array, like everything else

#### CONVOLUTIONAL FILTERS

- cudnnFilterDescriptor t
  - Set by calling cudnnSetFilter4dDescriptor ( cudnnFilterDescriptor\_t filterDesc, cudnnDataType\_t datatype, cudnnTensorFormat\_t format, int k, int c, int h, int w)
  - Use TENSOR\_FORMAT\_NCHW for format parameter
  - k = # of output channels, c = # of input channels

#### CONVOLUTIONAL FILTERS

- cudnnFilterDescriptor t
  - Get contents by calling cudnnGetFilter4dDescriptor ( cudnnFilterDescriptor\_t filterDesc, cudnnDataType\_t \*datatype, cudnnTensorFormat\_t \*format, int \*k, int \*c, int \*h, int \*w)
  - As usual, this function returns by setting pointers to output parameters

- cudnnConvolutionDescriptor\_t
  - Allocate with cudnnCreateConvolutionDescriptor ( cudnnConvolutionDescriptor\_t \*convDesc)
  - Free with cudnnDestroyConvolutionDescriptor ( cudnnConvolutionDescriptor\_t convDesc)
  - For HW6 we will be considering 2D convolutions only

- cudnnConvolutionDescriptor t

- cudnnConvolutionDescriptor\_t
  - pad\_h and pad\_w are respectively the number of rows and columns of zeros to pad the input with – use 0 for both
- u and v are respectively the vertical and horizontal stride of the convolution (to downsample w/o pooling) use 1 for both
  - Use 1 for both dilation\_h and dilation\_w (roughly a stretch factor for filters, but beyond the scope of this class)

- cudnnConvolutionDescriptor\_t
  - cudnnConvolutionMode\_t is an enum saying whether to
    do a convolution or cross-correlation. For this set, use
     CUDNN CONVOLUTION for the mode argument.
  - cudnnDataType\_t is an enum indicating the kind of data being used (float, double, int, long int, etc.). For this set, use
     CUDNN\_DATA\_FLOAT for the computeType argument.

- cudnnConvolutionDescriptor t
  - Get with cudnnGetConvolution2dDescriptor(
     cudnnConvolutionDescriptor\_t convDesc,
     int \*pad\_h, int \*pad\_w,
     int \*u, int \*v,
     int \*dilation\_h, int \*dilation\_w,
     cudnnConvolutionMode\_t \*mode,
     cudnnDataType t \*computeType)

- Given descriptors for an input and the filter we want to convolve it with, we can get the shape of the output via cudnnGetConvolution2dForwardOutputDim(cudnnConvolutionDescriptor\_t convDesc, cudnnTensorDescriptor\_t inputTensorDesc, cudnnFilterDescriptor\_t filterDesc, int \*n, int \*c, int \*h, int \*w)
- As usual, n, c, h, and w are set by reference as outputs

#### USING THESE IN A CONV NET

- All of cuDNN's functions for forward and backward passes in conv nets will extensively use these descriptor types
- This is why we are establishing them now
- One more aside before discussing the actual functions for doing the forward and backward passes...

#### CONVOLUTION ALGORITHMS

- Many ways to perform convolutions on GPUs!
  - Do it explicitly
  - Turn it into a matrix multiplication
  - Can use FFT to transform into frequency domain, multiply pointwise, and inverse FFT back
- cuDNN lets you choose the algorithm you want to use for all operations in the forward and backward passes

#### CONVOLUTION ALGORITHMS

- Different algorithms are better suited for different situations!
  - Most important factor: amount of global memory available for intermediate computations (workspace)
- Tradeoff b/w time and space complexity faster algorithms tend to need more space for intermediate computations
- cuDNN lets you specify preferences, and it gives you an algorithm that best matches your preferences

#### CONVOLUTION ALGORITHMS

- The choice of algorithm is represented via the enums cudnnConvolution<type>Preference\_t and cudnnConvolution<type>Algo\_t, and cudnnConvolution<type>AlgoPerf\_t, where <type> is one of Fwd, BwdFilter, and BwdData
- Feel free to look at NVIDIA docs for these types and related functions, but we will be handling them for you in HW6

#### FORWARD PASS: CONVOLUTION

- The forward pass for a conv layer with input  $\mathbf{X}^{(\ell-1)}$ , filter  $\mathbf{K}^{(\ell)}$ , and bias  $b^{(\ell)}$  is  $\mathbf{Z}^{(\ell)} = \mathbf{K}^{(\ell)} \otimes \mathbf{X}^{(\ell-1)} + b^{(\ell)}$
- In HW6, we will give you code that deals with the bias term
- Your job will be to perform the convolution  $K^{(\ell)} \otimes X^{(\ell-1)}$  using cudnnConvolutionForward() see next slide for a description of how to call this function

#### FORWARD PASS: CONVOLUTION

cudnnConvolutionForward( cudnnHandle t handle, void \*alpha, cudnnTensorDescriptor t xDesc, void \*x, cudnnFilterDescriptor t kDesc, void \*k, cudnnConvolutionDescriptor t convDesc, cudnnConvolutionFwdAlgo t algo, void \*workSpace, size t workSpaceBytes, void \*beta, cudnnTensorDescriptor t zDesc, void \*z)

#### FORWARD PASS: CONVOLUTION

- This function sets the contents of the output tensor z to alpha[0] \* conv(k, x) + beta[0] \* z
- The convolution algorithm, workspace, and size of the workspace will be supplied to you in HW6 (unnecessary complication for you to consider for this set)
- With alpha[0] = 1 and beta[0] = 0, this is exactly what you need to call!

#### BACKWARD PASS: CONVOLUTION

- With the neural net architecture given, we will have:
  - The output of the convolution  $\mathbf{Z}^{(\ell)} = \mathbf{K}^{(\ell)} \otimes \mathbf{X}^{(\ell-1)} + b^{(\ell)}$
  - The gradient  $\nabla_{\mathbf{Z}^{(\ell)}}[J]$  with respect to the output of the convolution (propagated backwards from the next layer)
- We want to find the gradients with respect to:
  - The filter  $\mathbf{K}^{(\ell)}$  and the bias  $b^{(\ell)}$  to do gradient descent
  - The input data  $\mathbf{X}^{(\ell-1)}$  to propagate backwards

#### BACKWARD PASS: CONVOLUTION

- Key to argument names
  - x is the input data  $\mathbf{X}^{(\ell-1)}$
  - k is the filter  $\mathbf{K}^{(\ell-1)}$
- lacktriangledown dz is the gradient  $abla_{\mathbf{Z}^{(\ell)}}[J]$  with respect to the output  $\mathbf{Z}^{(\ell)}$ 
  - dx is the gradient  $\nabla_{\mathbf{X}^{(\ell-1)}}[J]$  with respect to input data  $\mathbf{X}^{(\ell-1)}$
  - dk is the gradient  $\nabla_{\mathbf{K}^{(\ell)}}[J]$  with respect to the filter  $\mathbf{K}^{(\ell)}$
  - db is the gradient  $\nabla_{b^{(\ell)}}[J]$  with respect to the bias  $b^{(\ell)}$

#### BACKWARD PASS: CONVOLUTION

- Key to argument names
  - As always, the alpha and beta arguments are pointers to mixing parameters
  - If we are using a buffer out to accumulate the results of performing an operation op on an input buffer in, we have out = alpha[0] \* op(in) + beta[0] \* out

#### GRADIENT WRT BIAS

- cudnnConvolutionBackwardBias(
   cudnnHandle\_t handle,
   void \*alpha,
   cudnnTensorDescriptor\_t dzDesc, void \*dz,
   cudnnConvolutionDescriptor\_t convDesc,
   void \*beta,
   cudnnTensorDescriptor t dbDesc, void \*db)
- We will handle this for you in HW6

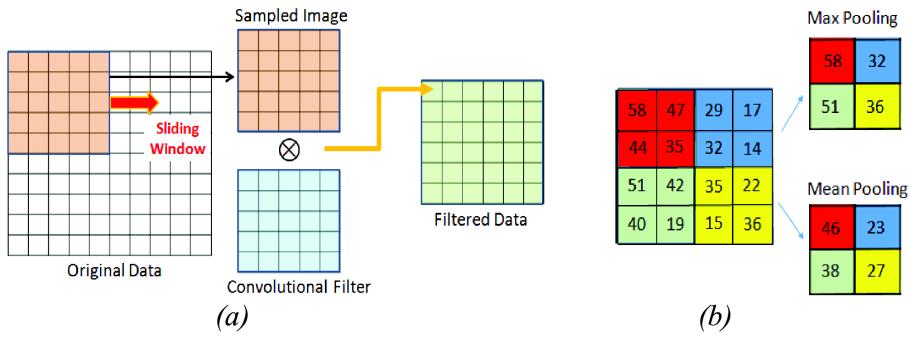
#### GRADIENT WRT FILTER

cudnnConvolutionBackwardFilter( cudnnHandle t handle, void \*alpha, cudnnTensorDescriptor t xDesc, void \*x, cudnnTensorDescriptor t dzDesc, void \*dz, cudnnConvolutionDescriptor t convDesc, cudnnConvolutionBwdFilterAlgo t algo, void \*workSpace, size t workSpaceBytes, void \*beta, cudnnFilterDescriptor t dkDesc, void \*dk)

#### GRADIENT WRT INPUT DATA

cudnnConvolutionBackwardData( cudnnHandle t handle, void \*alpha, cudnnFilterDescriptor t kDesc, void \*k, cudnnTensorDescriptor t dzDesc, void \*dz, cudnnConvolutionDescriptor t convDesc, cudnnConvolutionBwdDataAlgo t algo, void \*workSpace, size t workSpaceBytes, void \*beta, cudnnTensorDescriptor t dxDesc, void \*dx)

 Reminder: pooling lets us down-sample or focus on parts of images to reduce dimensionality while preserving information



http://ieeexplore.ieee.org/document/7590035/all-figures

- cudnnPoolingDescriptor t
  - Allocate with cudnnCreatePoolingDescriptor ( cudnnPoolingDescriptor t \*poolingDesc)
  - Free with cudnnDestroyPoolingDescriptor ( cudnnPoolingDescriptor\_t poolingDesc)
  - We will only be using 2D pooling operations in HW6

- cudnnPoolingDescriptor t
  - Set with cudnnSetPooling2dDescriptor( cudnnPoolingDescriptor\_t poolingDesc, cudnnPoolingMode\_t poolingMode, cudnnNanPropagation\_t nanProp, int windowHeight, int windowWidth, int verticalPad, int horizontalPad, int verticalStride, int horizontalStride)

- cudnnPoolingDescriptor t
  - cudnnPoolingMode\_t is an enum specifying the kind of pooling to do, i.e. max (CUDNN\_POOLING\_MAX) or average (CUDNN\_POOLING\_AVERAGE\_COUNT\_INCLUDE\_PADDING or
- CUDNN\_POOLING\_AVERAGE\_COUNT\_EXCLUDE\_PADDING)
  - For nanProp, use CUDNN\_PROPAGATE\_NAN
  - Use 0 for horizontal and vertical padding
  - Make the strides equal to the window dimensions

- cudnnPoolingDescriptor t
  - Get with cudnnGetPooling2dDescriptor ( cudnnPoolingDescriptor\_t \*poolingDesc, cudnnPoolingMode\_t \*poolingMode, cudnnNanPropagation\_t \*nanProp, int \*windowHeight, int \*windowWidth, int \*verticalPad, int \*horizontalPad, int \*verticalStride, int \*horizontalStride)

- We can get the output shape of a pooling operation on some input using the function
  - cudnnGetPooling2dForwardOutputDim(
    cudnnPoolingDescriptor\_t poolingDesc,
    cudnnTensorDescriptor\_t inputDesc,
    int \*n, int \*c, int \*h, int \*w)
  - n, c, h, and w are output parameters to be set by reference

- To perform a pooling operation in the forward direction, use
  - cudnnPoolingForward(
     cudnnHandle\_t handle,
     cudnnPoolingDescriptor\_t poolingDesc,
     void \*alpha,
     cudnnTensorDescriptor\_t xDesc, void \*x,
     void \*beta,
     cudnnTensorDescriptor t zDesc, void \*z)

- To differentiate with respect to a pooling operation, use
  - cudnnPoolingBackward(
     cudnnHandle\_t handle,
     cudnnPoolingDescriptor\_t poolingDesc,
     void \*alpha,
     cudnnTensorDescriptor\_t zDesc, void \*z,
     cudnnTensorDescriptor\_t dzDesc, void \*dz,
     void \*beta,
     cudnnTensorDescriptor\_t dxDesc, void \*dx)

- In the previous slides, x is the input to the pooling operation, dx is its gradient, z is the output of the pooling operation, and dz is its gradient
- alpha and beta are pointers to mixing parameters as usual
- In all cases, the last buffer given as an argument is the output array

#### SUMMARY

- Today, we discussed how to use cuDNN to
  - Perform convolutions
  - Backpropagate gradients with respect to convolutions
  - Perform pooling operations and backpropagate their gradients
- For HW6, these slides should be a good alternative reference to the NVIDIA docs.