CS 179: LECTURE 17

CONVOLUTIONAL NETS IN
CUDNN

LAST TIME

Motivation for convolutional neural nets

" Forward and backwards propagation algorithms for
convolutional neural nets (at a high level)

= Down-sampling data using pooling operations

= Foreshadowing to how we will use cuDNN to do it

TODAY

® Understanding cuDNN’s internal representations for
convolutions and pooling objects

= |mplementing convolutional nets using cuDNN

MORE SPECIFICALLY ...

= Today, we will discuss how to use cuDNN SWV to

= Perform convolutions (can use FFT or straight computation)
= Backpropagate gradients with respect to convolutions

" Perform “pooling” operations for dimensionality reduction and
backpropagate their gradients

® Much of this material can help HWé6 -- should be a good
additional resource in addition to the NVIDIA docs.

SW, REPRESENTING CONVOLUTIONS

" For tensors and their descriptors, we now also have
cudnnFilterDescriptor t (to describe a conv
kernel/filter) and cudnnConvolutionDescriptor t (to
describe an actual convolution) B

" We also have a cudnnPoolingDescriptor t to represent
a “pooling” operation (max pool, mean pool, etc.)

= See

= These have their own constructors, accessors, mutators, and
destructors

https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/

RECAP: CONVOLUTIONS

= Consider a c-by-h-by-w convolutional kernel or filter array

K and a C-by-H-by-W array representing an image X

= The convolution (technically cross-correlation) Z = K& X is
c—1 h-1w-1

Zli,j, k| = ZZZKt’mn Xli+72,j+mk+n]

=0m=0 n=

= There are multiple ways to deal with boundary conditions;
for now, ignore any indices that are out of bounds

RECAP: CONVOLUTIONS (¢ = 1)

0 0 0 Kernel Matrix
100 | 97 | 96 0 -1 0 320
103 | 101 | 102 -1 5 -1

0 |101| 98 | 104 | 102 | 100 0 -1 0

0 99 | 101 | 106 | 104 | 99

0 104 | 104 | 104 | 100 | 98

Image Matrix 0x0+0+x—-1+0x+0 Output Matrix
+0*—-14+105*5+102*—1
+0*0+103+*—-1+4+99+0 =320

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

RECAP: CONVOLUTIONS (¢ = 3)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 | 156 | 155 | 156 | 158 | 158 | .. o | 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 153 | 154 | 157 | 159 | 159 0 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 149 | 151 | 155 | 158 | 159 0 160 | 162 | 166 | 169 | 170 0 156 | 158 | 162 | 165 | 166
0 | 146 | 146 | 149 | 153 | 158 | .. 0 | 156 | 156 | 159 | 163 | 168 | .. o | 155 | 155 | 158 | 162 | 167
0 145 | 143 | 143 | 148 | 158 0 155 | 153 | 153 | 158 | 168 0 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
cx B | L) € 1 ([er | o
(0 J0 | B i 1)-1](-1
) [B | | 1]10|-1
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
ﬂ ﬂ ﬂ -25
308 + —498 + 164 +1=-25

I

Same source as last figure Bias = 1

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

RELATION OF CONVOLUTIONTO FOURIER TRANSFORM

m Convolution of g and h in continuous domain defined by:

" @) = fermd@ s [)

i g(T)h(z — 1) dT = / g(z — 7)h(7)dt

— o0
m Convolution Theorem

m Fourier transform of convolution of two functions (or signals) is also the pointwise
product of their Fourier transforms.

® Convolution in one domain (e.g., time domain) equals point-wise multiplication in
the other domain (e.g., frequency domain). On GPU we can compute convolutions
using the inverse Fourier Transform! (Or not. It will be a choice!) Other choices too.

r(z) = {g*h}(z) = F {G - H}

m https://en.wikipedia.org/wiki/Convolution_theorem

https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Pointwise_product
https://en.wikipedia.org/wiki/Pointwise_product
https://en.wikipedia.org/wiki/Pointwise_product
https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem

FFT, CHOICE FOR COMPUTING CONVOLUTIONS ON GPUS?

® Box Filter in one domain (frequency) is sinc F(u) = kaxsinc(zxu)
L o : K) _
function in other domain (time/space domain) — ~ , sinc(x):smx(x)
. . . . AX| Ax
= Can c.ut o.ff hlgh frequencies by n.1ult|ply.|ng.by Box)
box-like filter in frequency domain, which is
same as convolving with sinc-like filter in
space domain (for antialiasing on CPUs).) = kdu - sinc{zdux) d e
= FFT on GPUs gives other efficient choices for Y. o ﬂu_l
computing convolutions, for use in NNs sine I
X u

m See

{9 xh} =F {F{g } F{r }}

https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373
https://jeheonpark93.medium.com/image-processing-convolution-kernel-aliasing-3dc18ff5e373

SW, CONVOLUTIONAL FILTERS

" cudnnFilterDescriptor t

= Allocate by calling cudnnCreateFilterDescriptor (
cudnnFilterDescriptor t *filterDesc)

" Free by calling cudnnDestroyFilterDescriptor (
cudnnFilterDescriptor t filterDesc)

= The filter itself is just an array of numbers on the device
= We will be using 4D arrays to store filters

= However,this is still just a long linear array, like everything else

CONVOLUTIONAL FILTERS

" cudnnFilterDescriptor t

® Set by calling cudnnSetFilter4dDescriptor (
cudnnFilterDescriptor t filterDesc,
cudnnDataType t datatype,
cudnnTensorFormat t format,
int k, int ¢, 1int h, 1int w)

= Use TENSOR FORMAT NCHW for format parameter

=k = # of output channels, c = # of input channels

CONVOLUTIONAL FILTERS

" cudnnFilterDescriptor t

= Get contents by calling cudnnGetFilterddDescriptor (
cudnnFilterDescriptor t filterDesc,
cudnnDataType t *datatype,
cudnnTensorFormat t *format,
int *k, 1nt *c, 1nt *h, 1int *w)

= As usual, this function returns by setting pointers to output
parameters

DESCRIBING CONVOLUTIONS

" cudnnConvolutionDescriptor t

" Allocate with cudnnCreateConvolutionDescriptor (
cudnnConvolutionDescriptor t *convDesc)

® Free with cudnnDestroyConvolutionDescriptor (
cudnnConvolutionDescriptor t convDesc)

= For HWé we will be considering 2D convolutions only

DESCRIBING CONVOLUTIONS

" cudnnConvolutionDescriptor t

®m Set with cudnnSetConvolution2dDescriptor (
cudnnConvolutionDescriptor t convDesc,
int pad h, int pad w,
int u, int v,
int dilation h, int dilation w,
cudnnConvolutionMode t mode,
cudnnDataType t computeType)

DESCRIBING CONVOLUTIONS

" cudnnConvolutionDescriptor t

= pad handpad w are respectively the number of rows and
columns of zeros to pad the input with — use O for both

= y and v are respectively the vertical and horizontal stride of
the convolution (to downsample w/o pooling) — use 1 for both

= Uselforbothdilation handdilation w (roughlya
stretch factor for filters, but beyond the scope of this class)

DESCRIBING CONVOLUTIONS

" cudnnConvolutionDescriptor t

= cudnnConvolutionMode t isan enum saying whether to

do a convolution or cross-correlation. For this set, use
CUDNN CONVOLUTION for the mode argument.

= cudnnDataType t isan enum indicating the kind of data

being used (float, double, int, long int, etc.). For this set, use
CUDNN DATA FLOAT for the computeType argument.

DESCRIBING CONVOLUTIONS

" cudnnConvolutionDescriptor t

Get with cudnnGetConvolution2dDescriptor (
cudnnConvolutionDescriptor t convDesc,
int *pad h, int *pad w,
int *u, int *v,
int *dilation h, int *dilation w,
cudnnConvolutionMode t *mode,
cudnnDataType t *computeType)

DESCRIBING CONVOLUTIONS

= Given descriptors for an input and the filter we want to

convolve it with, we can get the shape of the output via
cudnnGetConvolutionZ2dForwardOutputDim (

cudnnConvolutionDescriptor t convDesc,
cudnnTensorDescriptor t inputTensorDesc,
cudnnFilterDescriptor t filterDesc,

int *n, i1nt *c, i1nt *h, 1int *w)

= As usual,n, c,h,and w are set by reference as outputs

USING THESE INA CONV NET

All of cuDNN’s functions for forward and backward passes in
conv nets will extensively use these descriptor types

This is why we are establishing them now

One more aside before discussing the actual functions for
doing the forward and backward passes...

CONVOLUTION ALGORITHMS

= Many ways to perform convolutions on GPUs!

= Do it explicitly
= Turn it into a matrix multiplication

= Can use FFT to transform into frequency domain, multiply
pointwise, and inverse FFT back

= cuDNN lets you choose the algorithm you want to use for
all operations in the forward and backward passes

CONVOLUTION ALGORITHMS

= Different algorithms are better suited for different situations!

= Most important factor:amount of global memory available for
intermediate computations (workspace)

= Tradeoff b/w time and space complexity — faster algorithms
tend to need more space for intermediate computations

= cuDNN lets you specify preferences, and it gives you an
algorithm that best matches your preferences

CONVOLUTION ALGORITHMS

= The choice of algorithm is represented via the enums
cudnnConvolution<type>Preference t and
cudnnConvolution<type>Algo t, and
cudnnConvolution<type>AlgoPerf t, where
<type> is one of Fwd, BwdFilter,and BwdData

" Feel free to look at NVIDIA docs for these types and related
functions, but we will be handling them for you in HWé6

FORWARD PASS: CONVOLUTION

The forward pass for a conv layer with input X®-1 filter
K®, and bias b is Z() = KO @ X~ 4 p®

In HW6, we will give you code that deals with the bias term

Your job will be to perform the convolution K @ X¢-1
using cudnnConvolutionForward () — see next slide

for a description of how to call this function

FORWARD PASS: CONVOLUTION

B cudnnConvolutionForward (
cudnnHandle t handle,
vold *alpha,
cudnnTensorDescriptor t xDesc, void *x,
cudnnFilterDescriptor t kDesc, void *k,
cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionFwdAlgo t algo,
vold *workSpace, size t workSpaceBytes,
volid *beta,
cudnnTensorDescriptor t zDesc, void *z)

FORWARD PASS: CONVOLUTION

= This function sets the contents of the output tensor z to
alpha[0] * conv(k, x) + betal[0] * =z

= The convolution algorithm, workspace, and size of the
workspace will be supplied to you in HW&é6 (unnecessary
complication for you to consider for this set)

= Withalpha[0] = 1landbeta[0] = O0,thisis exactly
what you need to call!

BACKWARD PASS: CONVOLUTION

= With the neural net architecture given, we will have:
= The output of the convolution Z0) = KO @ x¢-1) 4 p©)

= The gradient V() [/] with respect to the output of the
. convolution (propagated backwards from the next layer)

= We want to find the gradients with respect to:

= The filter K and the bias b*) to do gradient descent

= The input data X1 to propagate backwards

BACKWARD PASS: CONVOLUTION

= Key to argument names

= x is the input data X(¥~1
" X is the filter K¢~
. ® dzis the gradient V, () [/] with respect to the output YA
" dx is the gradient Vy(,-1)[/] with respect to input data X (¢-1)

= dk is the gradient V (»[/] with respect to the filter Kt
= db is the gradient V, ¢ [/] with respect to the bias b'®)

BACKWARD PASS: CONVOLUTION

= Key to argument names

= As always, the alpha and beta arguments are pointers to
mixing parameters

= [f we are using a buffer out to accumulate the results of

performing an operation op on an input buffer in, we have
out = alphal[0] * op(in) + betal[0] * out

GRADIENT WRT BIAS

B cudnnConvolutionBackwardBias (
cudnnHandle t handle,
volid *alpha,
cudnnTensorDescriptor t dzDesc, void *dz,
cudnnConvolutionDescriptor t convDesc,
vold *beta,
cudnnTensorDescriptor t dbDesc, void *db)

= We will handle this for you in HWé6

GRADIENT WRT FILTER

B cudnnConvolutionBackwardFilter (
cudnnHandle t handle,
vold *alpha,
cudnnTensorDescriptor t xDesc, void *x,
cudnnTensorDescriptor t dzDesc, void *dz,
cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionBwdFilterAlgo t algo,
vold *workSpace, size t workSpaceBytes,
vold *beta,
cudnnFilterDescriptor t dkDesc, void *dk)

GRADIENT WRT INPUT DATA

B cudnnConvolutionBackwardData (
cudnnHandle t handle,
vold *alpha,
cudnnFilterDescriptor t kDesc, void *k,
cudnnTensorDescriptor t dzDesc, void *dz,
cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionBwdDataAlgo t algo,
vold *workSpace, size t workSpaceBytes,
vold *beta,
cudnnTensorDescriptor t dxDesc, void *dx)

POOLING OPERATIONS

= Reminder: pooling lets us down-sample or focus on parts of
images to reduce dimensionality while preserving information

Sampled Image

>

L

Sliding

Window ®

Original Data

Convolutional Filter

(@)

Filtered Data

29

17

32

14

35

22

40 | 19

15

36

()

http://ieeexplore.ieee.org/document/7590035/all-figures

Max Pooling

http://ieeexplore.ieee.org/document/7590035/all-figures
http://ieeexplore.ieee.org/document/7590035/all-figures
http://ieeexplore.ieee.org/document/7590035/all-figures

POOLING OPERATIONS

" cudnnPoolingDescriptor t

" Allocate with cudnnCreatePoolingDescriptor (
cudnnPoolingDescriptor t *poolingDesc)

" Free with cudnnDestroyPoolingDescriptor (
cudnnPoolingDescriptor t poolingDesc)

= We will only be using 2D pooling operations in HWé6

POOLING OPERATIONS

" cudnnPoolingDescriptor t

m Set with cudnnSetPooling2dDescriptor (
cudnnPoolingDescriptor t poolingDesc,
cudnnPoolingMode t poolingMode,
cudnnNanPropagation t nanProp,
int windowHeight, int windowWidth,
int verticalPad, int horizontalPad,
int verticalStride, int horizontalStride)

POOLING OPERATIONS

" cudnnPoolingDescriptor t

cudnnPoolingMode t is an enum specifying the kind of
pooling to do, i.e. max (CUDNN POOLING MAX) or average
(CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING or
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING)

For nanProp,use CUDNN PROPAGATE NAN

Use 0 for horizontal and vertical padding

Make the strides equal to the window dimensions

POOLING OPERATIONS

" cudnnPoolingDescriptor t

® Get with cudnnGetPooling2dDescriptor (
cudnnPoolingDescriptor t *poolingDesc,
cudnnPoolingMode t *poolingMode,
cudnnNanPropagation t *nanProp,
int *windowHeilght, int *windowWidth,
int *verticalPad, int *horizontalPad,
int *verticalStride, 1nt *horizontalStride)

POOLING OPERATIONS

" We can get the output shape of a pooling operation on some
input using the function

B cudnnGetPoolingZ2dForwardOutputDim (
cudnnPoolingDescriptor t poolingDesc,
cudnnTensorDescriptor t 1inputDesc,
int *n, 1nt *c, int *h, int *w)

" n,c,h,and w are output parameters to be set by reference

POOLING OPERATIONS

= To perform a pooling operation in the forward direction, use

" cudnnPoolingForward (
cudnnHandle t handle,
cudnnPoolingDescriptor t poolingDesc,
vold *alpha,
cudnnTensorDescriptor t xDesc, void *x,
volid *beta,
cudnnTensorDescriptor t zDesc, void *z)

POOLING OPERATIONS

= To differentiate with respect to a pooling operation, use

"= cudnnPoollingBackward (
cudnnHandle t handle,
cudnnPoolingDescriptor t poolingDesc,
vold *alpha,
cudnnTensorDescriptor t zDesc, void *z,
cudnnTensorDescriptor t dzDesc, void *dz,
vold *beta,
cudnnTensorDescriptor t dxDesc, void *dx)

POOLING OPERATIONS

" |n the previous slides, x is the input to the pooling
operation, dx is its gradient, z is the output of the pooling
operation,and dz is its gradient

" alpha and beta are pointers to mixing parameters as
usual

= |n all cases, the last buffer given as an argument is the
output array

SUMMARY

= Today, we discussed how to use cuDNN to

= Perform convolutions
= Backpropagate gradients with respect to convolutions

= Perform pooling operations and backpropagate their gradients

" For HWS, these slides should be a good alternative reference
to the NVIDIA docs.

