
CS 179: LECTURE 15

INTRODUCTION TO CUDNN

(CUDA DEEP NEURAL NETS)



LAST TIME

 We derived the minibatch stochastic gradient descent algorithm 

for neural networks, i.e. 𝐖 ℓ ← 𝐖 ℓ −
1

𝑘
𝜂 𝐗 ℓ−1 ′

Δ ℓ 𝑇

 Mostly matrix multiplications to compute Δ ℓ

 One other derivative, 𝜃′ 𝒁𝑖𝑗
ℓ

 cuBLAS (Basic Linear Algebra Subroutines) already does matrix 

multiplications for us

 cuDNN will take care of these “other” derivatives for us



TODAY

 Using cuDNN to do deep neural networks



SETTING UP CUDNN

 cudnnHandle_t

 Like cuBLAS, you need to maintain cuDNN library context

 Call cudnnCreate(cudnnHandle_t *handle)

to initialize the context

 Call cudnnDestroy(cudnnHandle_t handle)

to clean up the context



HANDLING ERRORS

 Almost every function we will talk about today returns a 
cudnnStatus_t (an enum saying whether a cuDNN call 

was successful or how it failed)

 Like standard CUDA, we will provide you with a 
checkCUDNN(cudnnStatus_t status) wrapper 

function that parses any error statuses for you

 Make sure you wrap every function call with this function so 

you know where and how your code breaks!



REMINDERS ABOUT CUDA

 Pattern of allocate → initialize → free (reiterate here for 

students who may not be as comfortable with C++)



DATA REPRESENTATION

 cudnnTensor_t

 For the purposes of cuDNN (and much of machine learning), a 

tensor is just a multidimensional array

 A wrapper around a “flattened” 3-8 dimensional array

 Used to represent minibatches of data

 For now, we will be using “flattened” 4D arrays to represent 
each minibatch X



DATA REPRESENTATION

 cudnnTensor_t

 Consider the case where each individual training example 𝑥 is 

just a vector (so the last two axes will have size 1 each)

 Then X[n,c,0,0] is the value of component c of example n

 If axis <k> has size size<k>, then X[n,c,h,w] (pseudocode) 

is actually X[n*size0*size1*size2 + c*size0*size1 

+ h*size0 + w]



DATA REPRESENTATION

 cudnnTensor_t

 More generally, a single training example may itself be a matrix 

or a tensor.

 For example, in a minibatch of RGB images, we may have 
X[n,c,h,w], where n is the index of an image in the 

minibatch, c is the channel (R = 0, G = 1, B = 2), and h and w

index a pixel (h, w) in the image (h and w are height and width)



DATA REPRESENTATION

 cudnnTensorDescriptor_t

 Allocate by calling cudnnCreateTensorDescriptor(

cudnnTensorDescriptor_t *desc)

 The ordering of array axes is defined by an enum called a 

cudnnTensorFormat_t (since we are indexing as 

X[n,c,h,w], we will use CUDNN_TENSOR_NCHW)

 A cudnnDataType_t specifies the data type of the tensor 

(we will use CUDNN_DATA_FLOAT)



DATA REPRESENTATION

 cudnnTensorDescriptor_t

 Initialize by calling cudnnSetTensor4dDescriptor( 

cudnnTensorDescriptor_t desc, 

cudnnTensorFormat_t format, 

cudnnDataType_t dataType,

int n, int c, int h, int w)

 Free by calling cudnnDestroyTensorDescriptor( 

cudnnTensorDescriptor_t desc)



DATA REPRESENTATION

 cudnnTensorDescriptor_t

 Get the contents by calling cudnnGetTensor4dDescriptor( 

cudnnTensorDescriptor_t desc,

cudnnDataType_t dataType,

int *n, int *c, int *h, int *w,

int *nStr, int *cStr, int *hStr, int *wStr)

 Standard trick of returning by setting output parameters

 Don’t worry about the strides nStr, cStr, hStr, wStr



RELATION TO ASSIGNMENT 5
 Forward pass (Algorithm)

 For each minibatch (𝐗 0 , 𝐘) of 𝑘 training examples

 (Each example and its label are a column in matrices 𝐗 0 and 𝐘
respectively)

 For each ℓ counting up from 1 to 𝐿

 Compute matrix 𝐙 ℓ = 𝐖 ℓ 𝑇
𝐗 ℓ−1 ′

 Compute matrix 𝐗 ℓ = 𝜃 ℓ 𝐙 ℓ

 Our model’s prediction is 𝐗 𝐿



RELATION TO ASSIGNMENT 5

 Forward pass (Implementation)

 Calculate the expected sizes of the inputs 𝐗 ℓ−1 and outputs 

𝐙 ℓ of each layer and allocate arrays of the appropriate size

 Input 𝐗 ℓ−1 has shape 𝑑ℓ−1 × 𝑘

 Weight matrix 𝐖 ℓ has shape 𝑑ℓ−1 × 𝑑ℓ

 Outputs 𝐙 ℓ = 𝐖 ℓ 𝑇
𝐗 ℓ−1 ′

and 𝐗 ℓ = 𝜃 𝐙 ℓ have shape 
𝑑ℓ × 𝑘

 Initialize tensor descriptors for each 𝐗 ℓ and 𝐙 ℓ



RELATION TO ASSIGNMENT 5
 Forward pass (Implementation)

 Note that cuBLAS puts matrices in column-major order, so 

𝐗 ℓ and 𝐙 ℓ will be tensors of shape (𝑘, 𝑑ℓ, 1, 1)

 In this assignment, the skeleton code we provide will handle 

the bias terms for you (this is the extra 𝑥0 = 1 term that we’ve 

been carrying in 𝑥′ = (1, 𝑥) this whole time)

 Just remember that when we write 𝐗 ℓ ′
, we are implicitly 

including this bias term!



RELATION TO ASSIGNMENT 5

 Backward pass (Algorithm)

 Initialize gradient matrix Δ 𝐿 = 𝐗 𝐿 − 𝐘

 For each ℓ counting down from 𝐿 to 1

 Calculate 𝐀 ℓ = ∇
𝐗 ℓ−1 ′ 𝐽 = 𝐖 ℓ Δ ℓ

 Calculate Δ𝑖𝑗
ℓ−1

=
𝜕𝐽

𝜕𝐙𝑖𝑗
ℓ−1 = 𝐀𝑖𝑗

ℓ
𝜃 ℓ−1 ′

𝐙𝑖𝑗
ℓ−1

for each

𝑖 = 1,… , 𝑘 and 𝑗 = 1,… , 𝑑ℓ−1

 Update 𝐖 ℓ ← 𝐖 ℓ −
1

𝑘
𝜂 𝐗 ℓ−1 ′

Δ ℓ 𝑇



RELATION TO ASSIGNMENT 5

 Backward pass (Implementation)

 Each Δ ℓ matrix has the same shape as the input 𝐗 ℓ to its 

corresponding layer, i.e. 𝑘 × 𝑑ℓ

 Have each Δ ℓ share a tensor descriptor with its 

corresponding 𝐗 ℓ

 Update each 𝐖 ℓ using cuBLAS’s GEMM

 cuDNN needs the associated tensor descriptor when 

applying the derivative of the activation/nonlinearity 𝜃



ACTIVATION FUNCTIONS

 cudnnActivationDescriptor_t

 Allocate with cudnnCreateActivationDescriptor( 
cudnnActivationDescriptor_t *desc)

 Destroy with cudnnDestroyActivationDescriptor( 
cudnnActivationDescriptor_t desc)



ACTIVATION FUNCTIONS

 cudnnActivationMode_t

 An enum that specifies the type of activation we should 

apply after any given layer

 Specify as CUDNN_ACTIVATION_<type>

 <type> can be SIGMOID, RELU, TANH, CLIPPED_RELU, 

or ELU (the last 2 are fancier activations that address some 

of the issues with ReLU); use RELU for this assignment



ACTIVATION FUNCTIONS

 Graphs of activations as a reminder



ACTIVATION FUNCTIONS

 cudnnNanPropagation_t

 An enum that specifies whether to propagate NAN’s

 Use CUDNN_PROPAGATE_NAN for this assignment



ACTIVATION FUNCTIONS

 cudnnActivationDescriptor_t

 Set with cudnnSetActivationDescriptor( 
cudnnActivationDescriptor_t desc, 

cudnnActivationMode_t mode, 

cudnnNanPropagation_t reluNanOpt,

double coef)

 coef is relevant only for clipped ReLU and ELU 

activations, so just use 0.0 for this assignment



ACTIVATION FUNCTIONS

 cudnnActivationDescriptor_t

 Get contents with cudnnGetActivationDescriptor( 
cudnnActivationDescriptor_t desc, 

cudnnActivationMode_t *mode, 

cudnnNanPropagation_t *reluNanOpt,

double *coef)

 coef is relevant only for clipped ReLU and ELU 
activations, so just give it a reference to a double for 
throwaway values



ACTIVATION FUNCTIONS

 Forward pass for an activation 𝜃 ℓ

 Computes tensor x = alpha[0] * 𝜃 ℓ (z) + beta[0] * x

 Note: numeric * means element-wise multiplication

 cudnnActivationForward(

cudnnHandle_t handle, 

cudnnActivationDescriptor_t activationDesc,

void *alpha,

cudnnTensorDescriptor_t zDesc, void *z, 

void *beta,

cudnnTensorDescriptor_t xDesc, void *x)



ACTIVATION FUNCTIONS

 Backward pass for an activation 𝜃 ℓ−1

 Computes dz = alpha[0] * ∇z𝜃
ℓ−1 (z) * dx + beta[0] * dz

 cudnnActivationBackward(

cudnnHandle_t handle, 

cudnnActivationDescriptor_t activationDesc,

void *alpha,

cudnnTensorDescriptor_t xDesc,  void *x,

cudnnTensorDescriptor_t dxDesc, void *dx, 

void *beta, 

cudnnTensorDescriptor_t zDesc,  void *z,

cudnnTensorDescriptor_t dzDesc, void *dz)



ACTIVATION FUNCTIONS

 Backward pass for an activation 𝜃 ℓ−1

 Computes dz = alpha[0] * ∇z𝜃
ℓ−1 (z) * dx + beta[0] * dz

 These are element-wise products, not matrix products!

 x: output of the activation, 𝐗 ℓ−1 = 𝜃 ℓ−1 𝐙 ℓ−1

 dx: derivative wrt x, 𝐀 ℓ = ∇𝐗 ℓ−1 𝐽 = 𝐖 ℓ Δ ℓ 𝑇

 z: input to the activation, 𝐙 ℓ−1

 dz: tensor to accumulate Δ ℓ−1 = ∇𝐙 ℓ−1 𝐽 as output



SOFTMAX/CROSS-ENTROPY LOSS

 Consider a single training example 𝑥 0 transformed as 

𝑥 0 → 𝑧 1 → 𝑥 1 → ⋯ → 𝑧 𝐿 → 𝑥 𝐿

 The softmax function is 𝑥𝑖
𝐿
= 𝑝𝑖 𝑧

𝐿 =
exp 𝑧𝑖

𝐿

σ
𝑗=1

𝑑𝐿 exp 𝑧𝑗
𝐿

 The cross-entropy loss is 𝐽 𝑧 𝐿 = −σ𝑖=1
𝑑𝐿 𝑦𝑖 ln 𝑝𝑖(𝑧

𝐿

 Gives us a notion of how good our classifier is



SOFTMAX/CROSS-ENTROPY LOSS

 Forward pass

 Computes tensor x = alpha[0] * softmax(z) + beta[0] * x

 cudnnSoftmaxForward(cudnnHandle_t handle,

cudnnSoftmaxAlgorithm_t alg,

cudnnSoftmaxMode_t mode, 

void *alpha,

cudnnTensorDescriptor_t zDesc, void *z,

void *beta,

cudnnTensorDescriptor_t xDesc, void *x)



SOFTMAX/CROSS-ENTROPY LOSS

 cudnnSoftmaxAlgorithm_t

 Enum that specifies how to do compute the softmax

 Use CUDNN_SOFTMAX_ACCURATE for this class (scales 

everything by max
𝑖

𝑧𝑖
𝐿

to avoid overflow)

 The other options are CUDNN_SOFTMAX_FAST (less 

numerically stable) and CUDNN_SOFTMAX_LOG (computes the 

natural log of the softmax function)



SOFTMAX/CROSS-ENTROPY LOSS

 cudnnSoftmaxMode_t

 Enum that specifies over which data to compute the softmax

 CUDNN_SOFTMAX_MODE_INSTANCE does it over the entire 

input (sum over all c, h, w for a single n in X[n,c,h,w])

 CUDNN_SOFTMAX_MODE_CHANNEL does it over each channel 

(sum over all c for each n, h, w triple in X[n,c,h,w])

 Since h and w are both size 1 here, either is fine to use



SOFTMAX/CROSS-ENTROPY LOSS

 Backward pass

 cuDNN has a built-in function to compute the gradient of the 

softmax activation on its own

 However, when coupled with the cross-entropy loss, we get 

the following gradient wrt 𝐙 𝐿 : Δ 𝐿 = ∇𝐳 𝐿 𝐽 = 𝐗 𝐿 − 𝐘

 This is easier and faster to compute manually!

 Therefore, you will implement the kernel for this yourself



SOFTMAX WITH OTHER LOSSES

 Backward pass

 For different losses, use the following function:

 cudnnSoftmaxBackward(cudnnHandle_t handle,

cudnnSoftmaxAlgorithm_t alg,

cudnnSoftmaxMode_t mode,

void *alpha,

cudnnTensorDescriptor_t xDesc,  void *x, 

cudnnTensorDescriptor_t dxDesc, void *dx,

void *beta,

cudnnTensorDescriptor_t dzDesc, void *dz)



SOFTMAX WITH OTHER LOSSES

 Backward pass

 As with other backwards functions in cuDNN, this function 

computes the tensor dz = alpha[0] * ∇z𝐽(z) + beta[0] * dz

 x is the output of the softmax function and dx is the derivative 

of our loss function 𝐽 wrt x (cuDNN uses them internally)

 Note that unlike backwards activations, we don’t need a z 

input parameter (where z is the input to the softmax function)



SUMMARY

 Defining data in terms of tensors

 Using those tensors as arguments to cuDNN’s built-in 

functions for both the forwards and backwards passes 

through a neural network

 You can find more details about everything we discussed in 

NVIDIA’s official cuDNN developer guide

 Next week: convolutional neural nets


