CS 179: LECTURE 15

INTRODUCTION TO CUDNN (CUDA DEEP NEURAL NETS)

LAST TIME

- We derived the minibatch stochastic gradient descent algorithm for neural networks, i.e. $\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)} \frac{1}{k} \eta \left(\mathbf{X}^{(\ell-1)'} \Delta^{(\ell)}^T \right)$
 - Mostly matrix multiplications to compute $\Delta^{(\ell)}$
 - One other derivative, $\theta'\left(\boldsymbol{Z}_{ij}^{(\ell)}\right)$
- cuBLAS (Basic Linear Algebra Subroutines) already does matrix multiplications for us
- cuDNN will take care of these "other" derivatives for us

TODAY

Using cuDNN to do deep neural networks

SETTING UP CUDNN

- cudnnHandle t
 - Like cuBLAS, you need to maintain cuDNN library context
 - Call cudnnCreate (cudnnHandle_t *handle) to initialize the context
 - Call cudnnDestroy(cudnnHandle_t handle)to clean up the context

HANDLING ERRORS

- Almost every function we will talk about today returns a cudnnStatus_t (an enum saying whether a cuDNN call was successful or how it failed)
- Like standard CUDA, we will provide you with a checkCUDNN (cudnnStatus_t status) wrapper function that parses any error statuses for you
- Make sure you wrap every function call with this function so you know where and how your code breaks!

REMINDERS ABOUT CUDA

■ Pattern of allocate \rightarrow initialize \rightarrow free (reiterate here for students who may not be as comfortable with C++)

- cudnnTensor t
 - For the purposes of cuDNN (and much of machine learning), a tensor is just a multidimensional array
 - A wrapper around a "flattened" 3-8 dimensional array
 - Used to represent minibatches of data
 - For now, we will be using "flattened" 4D arrays to represent each minibatch X

- cudnnTensor t
 - Consider the case where each individual training example x is just a vector (so the last two axes will have size 1 each)
 - Then X[n,c,0,0] is the value of component c of example n
 - If axis <k> has size size<k>, then X[n,c,h,w] (pseudocode)
 is actually X[n*size0*size1*size2 + c*size0*size1
 + h*size0 + w]

- cudnnTensor t
 - More generally, a single training example may itself be a matrix or a tensor.
 - For example, in a minibatch of RGB images, we may have X[n, c, h, w], where n is the index of an image in the minibatch, c is the channel (R = 0, G = 1, B = 2), and h and w index a pixel (h, w) in the image (h and w are height and width)

- cudnnTensorDescriptor t
 - Allocate by calling cudnnCreateTensorDescriptor (cudnnTensorDescriptor t *desc)
 - The ordering of array axes is defined by an enum called a cudnnTensorFormat_t (since we are indexing as X[n,c,h,w], we will use CUDNN_TENSOR_NCHW)
 - A cudnnDataType_t specifies the data type of the tensor (we will use CUDNN DATA FLOAT)

- cudnnTensorDescriptor_t
 - Initialize by calling cudnnSetTensor4dDescriptor (cudnnTensorDescriptor_t desc, cudnnTensorFormat_t format, cudnnDataType_t dataType, int n, int c, int h, int w)
 - Free by calling cudnnDestroyTensorDescriptor (cudnnTensorDescriptor t desc)

- cudnnTensorDescriptor t
 - Get the contents by calling cudnnGetTensor4dDescriptor (cudnnTensorDescriptor_t desc, cudnnDataType_t dataType, int *n, int *c, int *h, int *w, int *nStr, int *cStr, int *hStr, int *wStr)
 - Standard trick of returning by setting output parameters
 - Don't worry about the strides nStr, cStr, hStr, wStr

- Forward pass (Algorithm)
 - For each minibatch $(\mathbf{X}^{(0)}, \mathbf{Y})$ of k training examples
 - (Each example and its label are a column in matrices $\mathbf{X}^{(0)}$ and \mathbf{Y} respectively)
 - For each ℓ counting up from 1 to L
 - Compute matrix $\mathbf{Z}^{(\ell)} = \mathbf{W}^{(\ell)^T} \mathbf{X}^{(\ell-1)'}$
 - Compute matrix $\mathbf{X}^{(\ell)} = \theta^{(\ell)}(\mathbf{Z}^{(\ell)})$
 - Our model's prediction is $\mathbf{X}^{(L)}$

- Forward pass (Implementation)
 - Calculate the expected sizes of the inputs $\mathbf{X}^{(\ell-1)}$ and outputs $\mathbf{Z}^{(\ell)}$ of each layer and allocate arrays of the appropriate size
 - Input $\mathbf{X}^{(\ell-1)}$ has shape $d_{\ell-1} \times k$
 - Weight matrix $\mathbf{W}^{(\ell)}$ has shape $d_{\ell-1} \times d_{\ell}$
 - Outputs $\mathbf{Z}^{(\ell)} = \mathbf{W}^{(\ell)T} \mathbf{X}^{(\ell-1)'}$ and $\mathbf{X}^{(\ell)} = \theta(\mathbf{Z}^{(\ell)})$ have shape $d_{\ell} \times k$
 - Initialize tensor descriptors for each $\mathbf{X}^{(\ell)}$ and $\mathbf{Z}^{(\ell)}$

- Forward pass (Implementation)
 - Note that cuBLAS puts matrices in column-major order, so $\mathbf{X}^{(\ell)}$ and $\mathbf{Z}^{(\ell)}$ will be tensors of shape $(k,d_\ell,1,1)$
 - In this assignment, the skeleton code we provide will handle the bias terms for you (this is the extra $x_0 = 1$ term that we've been carrying in x' = (1, x) this whole time)
 - Just remember that when we write $\mathbf{X}^{(\ell)}$, we are implicitly including this bias term!

- Backward pass (Algorithm)
 - Initialize gradient matrix $\Delta^{(L)} = \mathbf{X}^{(L)} \mathbf{Y}$
 - For each ℓ counting down from L to 1
 - Calculate $\mathbf{A}^{(\ell)} = \nabla_{\mathbf{X}^{(\ell-1)'}}[J] = \mathbf{W}^{(\ell)}\Delta^{(\ell)}$
 - Calculate $\Delta_{ij}^{(\ell-1)} = \frac{\partial J}{\partial \mathbf{Z}_{ij}^{(\ell-1)}} = \mathbf{A}_{ij}^{(\ell)} \theta^{(\ell-1)'} \left(\mathbf{Z}_{ij}^{(\ell-1)} \right)$ for each $i=1,\ldots,k$ and $j=1,\ldots,d_{\ell-1}$
 - Update $\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)} \frac{1}{k} \eta \left(\mathbf{X}^{(\ell-1)'} \Delta^{(\ell)}^T \right)$

- Backward pass (Implementation)
 - Each $\Delta^{(\ell)}$ matrix has the same shape as the input $\mathbf{X}^{(\ell)}$ to its corresponding layer, i.e. $k \times d_{\ell}$
 - Have each $\Delta^{(\ell)}$ share a tensor descriptor with its corresponding $\mathbf{X}^{(\ell)}$
 - Update each $\mathbf{W}^{(\ell)}$ using cuBLAS's GEMM
 - ullet cuDNN needs the associated tensor descriptor when applying the derivative of the activation/nonlinearity heta

- cudnnActivationDescriptor t
 - Allocate with cudnnCreateActivationDescriptor (cudnnActivationDescriptor t *desc)
 - Destroy with cudnnDestroyActivationDescriptor (cudnnActivationDescriptor t desc)

- cudnnActivationMode_t
 - An enum that specifies the type of activation we should apply after any given layer
 - Specify as CUDNN_ACTIVATION_<type>
 - <type> can be SIGMOID, RELU, TANH, CLIPPED_RELU, or ELU (the last 2 are fancier activations that address some of the issues with ReLU); use RELU for this assignment

Graphs of activations as a reminder

- cudnnNanPropagation t
 - An enum that specifies whether to propagate NAN's
 - Use CUDNN_PROPAGATE_NAN for this assignment

- cudnnActivationDescriptor t
 - Set with cudnnSetActivationDescriptor (cudnnActivationDescriptor_t desc, cudnnActivationMode_t mode, cudnnNanPropagation_t reluNanOpt, double coef)
 - coef is relevant only for clipped ReLU and ELU activations, so just use 0.0 for this assignment

- cudnnActivationDescriptor t
 - Get contents with cudnnGetActivationDescriptor (cudnnActivationDescriptor_t desc, cudnnActivationMode_t *mode, cudnnNanPropagation_t *reluNanOpt, double *coef)
 - coef is relevant only for clipped ReLU and ELU activations, so just give it a reference to a double for throwaway values

- Forward pass for an activation $\theta^{(\ell)}$
 - Computes tensor $x = alpha[0] * \theta^{(\ell)}(z) + beta[0] * x$
 - Note: numeric * means element-wise multiplication
 - cudnnActivationForward(
 cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 void *alpha,
 cudnnTensorDescriptor_t zDesc, void *z,
 void *beta,
 cudnnTensorDescriptor_t xDesc, void *x)

- Backward pass for an activation $\theta^{(\ell-1)}$
 - Computes $dz = alpha[0] * \nabla_z \theta^{(\ell-1)}(z) * dx + beta[0] * dz$
 - cudnnActivationBackward(
 cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 void *alpha,
 cudnnTensorDescriptor_t xDesc, void *x,
 cudnnTensorDescriptor_t dxDesc, void *dx,
 void *beta,
 cudnnTensorDescriptor_t zDesc, void *z,
 cudnnTensorDescriptor_t dzDesc, void *dz)

- Backward pass for an activation $\theta^{(\ell-1)}$
 - Computes dz = alpha[0] * $\nabla_z \theta^{(\ell-1)}(z)$ * dx + beta[0] * dz
 - These are element-wise products, not matrix products!
 - x: output of the activation, $\mathbf{X}^{(\ell-1)} = \theta^{(\ell-1)}(\mathbf{Z}^{(\ell-1)})$
 - dx: derivative wrt x, $\mathbf{A}^{(\ell)} = \nabla_{\mathbf{X}^{(\ell-1)}}[J] = \mathbf{W}^{(\ell)} \Delta^{(\ell)}^T$
 - \blacksquare z: input to the activation, $\mathbf{Z}^{(\ell-1)}$
 - dz: tensor to accumulate $\Delta^{(\ell-1)} = \nabla_{\mathbf{Z}^{(\ell-1)}}[J]$ as output

- Consider a single training example $x^{(0)}$ transformed as $x^{(0)} \to z^{(1)} \to x^{(1)} \to \cdots \to z^{(L)} \to x^{(L)}$
- The softmax function is $x_i^{(L)} = p_i(z^{(L)}) = \frac{\exp(z_i^{(L)})}{\sum_{j=1}^{d_L} \exp(z_j^{(L)})}$
- The cross-entropy loss is $J(z^{(L)}) = -\sum_{i=1}^{d_L} y_i \ln(p_i(z^{(L)}))$
- Gives us a notion of how good our classifier is

- Forward pass
 - Computes tensor x = alpha[0] * softmax(z) + beta[0] * x
 - cudnnSoftmaxForward(cudnnHandle_t handle, cudnnSoftmaxAlgorithm_t alg, cudnnSoftmaxMode_t mode, void *alpha, cudnnTensorDescriptor_t zDesc, void *z, void *beta, cudnnTensorDescriptor t xDesc, void *x)

- cudnnSoftmaxAlgorithm t
 - Enum that specifies how to do compute the softmax
 - Use CUDNN_SOFTMAX_ACCURATE for this class (scales everything by $\max_{i} \left(z_{i}^{(L)} \right)$ to avoid overflow)
 - The other options are CUDNN_SOFTMAX_FAST (less numerically stable) and CUDNN_SOFTMAX_LOG (computes the natural log of the softmax function)

- cudnnSoftmaxMode t
 - Enum that specifies over which data to compute the softmax
 - CUDNN_SOFTMAX_MODE_INSTANCE does it over the entire input (sum over all c, h, w for a single n in X[n,c,h,w])
 - CUDNN_SOFTMAX_MODE_CHANNEL does it over each channel (sum over all c for each n, h, w triple in X[n,c,h,w])
- Since h and w are both size 1 here, either is fine to use

- Backward pass
 - cuDNN has a built-in function to compute the gradient of the softmax activation on its own
 - However, when coupled with the cross-entropy loss, we get the following gradient wrt $\mathbf{Z}^{(L)}$: $\Delta^{(L)} = \nabla_{\mathbf{z}^{(L)}}[J] = \mathbf{X}^{(L)} \mathbf{Y}$
 - This is easier and faster to compute manually!
- Therefore, you will implement the kernel for this yourself

SOFTMAX WITH OTHER LOSSES

- Backward pass
 - For different losses, use the following function:
 - cudnnSoftmaxBackward(cudnnHandle_t handle, cudnnSoftmaxAlgorithm_t alg, cudnnSoftmaxMode_t mode, void *alpha, cudnnTensorDescriptor_t xDesc, void *x, cudnnTensorDescriptor_t dxDesc, void *dx, void *beta, cudnnTensorDescriptor_t dzDesc, void *dz)

SOFTMAX WITH OTHER LOSSES

- Backward pass
 - As with other backwards functions in cuDNN, this function computes the tensor $dz = alpha[0] * \nabla_z J(z) + beta[0] * dz$
 - x is the output of the softmax function and dx is the derivative of our loss function J wrt x (cuDNN uses them internally)
 - Note that unlike backwards activations, we don't need a z input parameter (where z is the input to the softmax function)

SUMMARY

- Defining data in terms of tensors
- Using those tensors as arguments to cuDNN's built-in functions for both the forwards and backwards passes through a neural network
- You can find more details about everything we discussed in NVIDIA's official cuDNN developer guide
- Next week: convolutional neural nets