
CS 179: GPU Programming

Lecture 9 / Homework 3



Recap

• Some algorithms are “less obviously 
parallelizable”:

– Reduction

– Sorts

– FFT (and certain recursive algorithms)



Parallel FFT structure (radix-2)

Bit-reversed access

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm

Stage 1 Stage 2 Stage 3



cuFFT 1D example

Correction: 
Remember to use 
cufftDestroy(plan) 
when finished with 
transforms



Today

• Homework 3

– Large-kernel convolution



Systems

• Given input signal(s), produce output signal(s)



LTI system review (Week 1)

• “Linear time-invariant” (LTI) systems

– Lots of them!

• Can be characterized entirely by “impulse 
response” ℎ 𝑛

• Output given from input by convolution:

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]



Parallelization 

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

• Convolution is parallelizable!

– Sequential pseudocode (ignoring boundary 
conditions):

(set all y[i] to 0)

For (i from 0 through x.length - 1)

for (j from 0 through h.length – 1)

y[i] += (appropriate terms from x and h)



A problem…

• This worked for small impulse responses

– E.g. h[n], 0 ≤ n ≤ 20 in HW 1

• Homework 1 was “small-kernel convolution”:

– (Vocab alert: Impulse responses are often called 
“kernels”!)



A problem…

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

• Sequential runtime: O(n*m)
– (n: size of x)

– (m: size of h)

– Troublesome for large m! (i.e. large impulse responses)

(set all y[i] to 0)

For (i from 0 through x.length - 1)

for (j from 0 through h.length – 1)

y[i] += (appropriate terms from x and h)



DFT/FFT

• Same problem with Discrete Fourier Transform!

• Successfully optimized and GPU-accelerated!

– O(n2) to O(n log n)

– Can we do the same here?



“Circular” convolution

• “equivalent” of convolution for periodic 
signals



“Circular” convolution

• Linear convolution:

• Circular convolution:

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥 𝑘 ℎ[ 𝑛 − 𝑘 𝑚𝑜𝑑 𝑁]



Example:

• x[0..3], h[0..1]

• Linear convolution:

y[0] = x[0]h[0]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

x0 x1 x2 x3

h0 h1 0 0

0 0x0 x1 x2 x3 0 0

0h1 h0 0 0 0 0 0



Example:

• x[0..3], h[0..1]

• Linear convolution:

y[0] = x[0]h[0]

y[1] = x[0]h[1] + x[1]h[0]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

x0 x1 x2 x3

h0 h1 0 0

0 0x0 x1 x2 x3 0 0

0h1 h0 0 0 0 0 0

0 0x0 x1 x2 x3 0 0

0 0h1 h0 0 0 0 0



Example:

• x[0..3], h[0..1]

• Linear convolution:

y[0] = x[0]h[0]

y[1] = x[0]h[1] + x[1]h[0]

y[2] = x[1]h[1] + x[2]h[0]

y[3] = x[2]h[1] + x[3]h[0]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

x0 x1 x2 x3

h0 h1 0 0

0 0x0 x1 x2 x3 0 0

0h1 h0 0 0 0 0 0

0 0x0 x1 x2 x3 0 0

0 0 0h1 h0 0 0 0



Example:

• x[0..3], h[0..1]

• Linear convolution:

y[0] = x[0]h[0]

y[1] = x[0]h[1] + x[1]h[0]

y[2] = x[1]h[1] + x[2]h[0]

y[3] = x[2]h[1] + x[3]h[0]

y[4] = x[3]h[1] + x[4]h[0]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

x0 x1 x2 x3

h0 h1 0 0

0 0x0 x1 x2 x3 0 0

0 0 0 0h1 h0 0 0



Example:

• x[0..3], h[0..1]
• Linear convolution:

y[0] = x[0]h[0]
y[1] = x[0]h[1] + x[1]h[0]
y[2] = x[1]h[1] + x[2]h[0]
y[3] = x[2]h[1] + x[3]h[0]
y[4] = x[3]h[1] + x[4]h[0]

• Circular convolution:
y[0] = x[3]h[1] + x[0]h[0] + x[1]h[3] + x[2]h[2]
y[1] = x[0]h[1] + x[1]h[0] + x[2]h[3] + x[3]h[2]
y[2] = x[1]h[1] + x[2]h[0] + x[3]h[3] + x[0]h[2]
y[3] = x[2]h[1] + x[3]h[0] + x[0]h[3] + x[1]h[2]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥 𝑘 ℎ[ 𝑛 − 𝑘 𝑚𝑜𝑑 𝑁]

x0 x1 x2 x3

h0 h1 0 0

x0 x1 x2 x3

h0 0 0h1

0 0x0 x1 x2 x3 0 0

0h1 h0 0 0 0 0 0



Padding

• x[n] and h[n] are different lengths?

– h[2] and h[3] are undefined in the previous slide

– We will treat them as zeros

– To do this, store h and x in bigger arrays

– Pad them with enough zeros so they both have 
length at least N = x.length + h.length - 1



Padding

• x[n] and h[n] are different lengths?

– h[2] and h[3] are undefined in the previous slide

– We will treat them as zeros

– To do this, store h and x in bigger arrays

– Pad them with enough zeros so they both have 
length at least N = x.length + h.length - 1

• This will let us linearly convolve using circular 
convolution



Example: (Padding)

• x[0..3], h[0..1]
• Linear convolution:

y[0] = x[0]h[0]
y[1] = x[0]h[1] + x[1]h[0]
y[2] = x[1]h[1] + x[2]h[0]
y[3] = x[2]h[1] + x[3]h[0]
y[4] = x[3]h[1] + x[4]h[0]

• Circular convolution:
y[0] = x[3]h[1] + x[0]h[0] + x[1]h[3] + x[2]h[2]
y[1] = x[0]h[1] + x[1]h[0] + x[2]h[3] + x[3]h[2]
y[2] = x[1]h[1] + x[2]h[0] + x[3]h[3] + x[0]h[2]
y[3] = x[2]h[1] + x[3]h[0] + x[0]h[3] + x[1]h[2]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥 𝑘 ℎ[ 𝑛 − 𝑘 𝑚𝑜𝑑 𝑁]



Example: (Padding)

• x[0..3], h[0..1]
• Linear convolution:

y[0] = x[0]h[0]
y[1] = x[0]h[1] + x[1]h[0]
y[2] = x[1]h[1] + x[2]h[0]
y[3] = x[2]h[1] + x[3]h[0]
y[4] = x[3]h[1] + x[4]h[0]

• Circular convolution:
y[0] = x[4]h[1] + x[0]h[0] + x[1]h[4] + x[2]h[3] + x[3]h[2]
y[1] = x[0]h[1] + x[1]h[0] + x[2]h[4] + x[3]h[3] + x[4]h[2]
y[2] = x[1]h[1] + x[2]h[0] + x[3]h[4] + x[4]h[3] + x[0]h[2]
y[3] = x[2]h[1] + x[3]h[0] + x[4]h[4] + x[0]h[3] + x[1]h[2]
y[4] = x[3]h[1] + x[4]h[0] + x[0]h[4] + x[1]h[3] + x[2]h[2]

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥 𝑘 ℎ[ 𝑛 − 𝑘 𝑚𝑜𝑑 𝑁]

N is now (4 + 2 – 1) = 5



Circular Convolution Theorem*

• Can be calculated by: IFFT(  FFT(x) .* FFT(h) )

• i.e.
റ𝑋 = 𝐹𝐹𝑇( റ𝑥)

𝐻 = 𝐹𝐹𝑇(ℎ)

– For all i:
𝑌𝑖 = 𝑋𝑖𝐻𝑖

– Then:

റ𝑦 = 𝐼𝐹𝐹𝑇(𝑌)
* DFT case

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥 𝑘 ℎ[ 𝑛 − 𝑘 𝑚𝑜𝑑 𝑁]



Circular Convolution Theorem*

• Can be calculated by: IFFT(  FFT(x) .* FFT(h) )

• i.e.
റ𝑋 = 𝐹𝐹𝑇( റ𝑥)

𝐻 = 𝐹𝐹𝑇(ℎ)

– For all i:
𝑌𝑖 = 𝑋𝑖𝐻𝑖

– Then:

റ𝑦 = 𝐼𝐹𝐹𝑇(𝑌)
* DFT case

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥 𝑘 ℎ[ 𝑛 − 𝑘 𝑚𝑜𝑑 𝑁]

O(n log n)  Assume n > m

O(m log m)

O(n)

O(n log n)

Total: 
O(n log n)



Summary

• Alternate algorithm for large impulse response 
convolution!

– Serial: O(n log n) vs. O(mn)

• Small vs. large m determines algorithm choice

• Runtime does “carry over” to parallel situations (to 
some extent)



Homework 3, Part 1

• Implement FFT (“large-kernel”) convolution

– Use cuFFT for FFT/IFFT (if brave, try your own)

• Use “batch” variable to save FFT calculations
Correction: Good practice in general, but results in poor 
performance on Homework 3

• Don’t forget padding

– Complex multiplication kernel:

• Multiply the FFT values pointwise!



Complex numbers

• cufftComplex: cuFFT complex number type

– Example usage:

cufftComplex a;

a.x = 3; // Real part

a.y = 4; // Imaginary part

• Complex Multiplication:

(a + bi)(c + di) = (ac - bd) + (ad + bc)i



Homework 3, Part 2

• For a normalized Gaussian filter, output values 
cannot be larger than the largest input

• Not true in general

Low Pass Filter Test Signal and Response



Normalization

• Amplitudes must lie in range [-1, 1]

– Normalize s.t. maximum magnitude is 1 (or 1 - ε)

• How to find maximum amplitude?



Reduction

• This time, maximum (instead of sum)

– Lecture 7 strategies

– “Optimizing Parallel Reduction in CUDA” (Harris)



Homework 3, Part 2

• Implement GPU-accelerated normalization

– Find maximum (reduction)

• The max amplitude may be a negative sample

– Divide by maximum to normalize 



(Demonstration)

• Rooms can be modeled as LTI systems!



Other notes

• Machines:

– Normal mode: titan, haru, mako, mx, minuteman

– Audio mode: titan, haru, mako

• Due date: 

– Wednesday (4/25), 3 PM


