CS 179: GPU Programming

Lecture 9 / Homework 3

Recap

- Some algorithms are "less obviously parallelizable":
 - Reduction
 - Sorts
 - FFT (and certain recursive algorithms)

Parallel FFT structure (radix-2)

cuFFT 1D example

```
#define NX 262144
cufftComplex *data host
        = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
cufftComplex *data back
        = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
// Get data...
cufftHandle plan;
cufftComplex *data1;
cudaMalloc((void**)&data1, sizeof(cufftComplex)*NX);
cudaMemcpy(data1, data host, NX*sizeof(cufftComplex), cudaMemcpyHostToDevice);
/* Create a 1D FFT plan. */
int batch = 1; // Number of transforms to run
cufftPlan1d(&plan, NX, CUFFT C2C, batch);
/* Transform the first signal in place. */
cufftExecC2C(plan, data1, data1, CUFFT FORWARD);
                                                                                Correction:
/* Inverse transform in place. */
                                                                                Remember to use
cufftExecC2C(plan, data1, data1, CUFFT INVERSE);
                                                                                cufftDestroy(plan)
cudaMemcpy(data back, data1, NX*sizeof(cufftComplex), cudaMemcpyDeviceToHost); when finished with
                                                                                transforms
```

Today

- Homework 3
 - Large-kernel convolution

Systems

Given input signal(s), produce output signal(s)

LTI system review (Week 1)

- "Linear time-invariant" (LTI) systems
 - Lots of them!

• Can be characterized entirely by "impulse response" h[n]

Output given from input by convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Parallelization

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Convolution is parallelizable!
 - Sequential pseudocode (ignoring boundary conditions):

```
(set all y[i] to 0)
For (i from 0 through x.length - 1)
        for (j from 0 through h.length - 1)
        y[i] += (appropriate terms from x and h)
```

A problem...

- This worked for small impulse responses
 - E.g. h[n], 0 ≤ n ≤ 20 in HW 1

- Homework 1 was "small-kernel convolution":
 - (Vocab alert: Impulse responses are often called "kernels"!)

A problem...

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Sequential runtime: O(n*m)
 - (n: size of x)
 - (m: size of h)
 - Troublesome for large m! (i.e. large impulse responses)

DFT/FFT

Same problem with Discrete Fourier Transform!

$$X_k \stackrel{\text{def}}{=} \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i k n/N}, \quad k \in \mathbb{Z}$$

- Successfully optimized and GPU-accelerated!
 - $-O(n^2)$ to O(n log n)

– Can we do the same here?

"Circular" convolution

"equivalent" of convolution for periodic signals

"Circular" convolution

Linear convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

Circular convolution:

$$y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]$$

x[0..3], h[0..1]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = x[0]h[0]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = x[0]h[0]$$

 $y[1] = x[0]h[1] + x[1]h[0]$

x[0..3], h[0..1]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

x[0..3], h[0..1]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = x[0]h[0]$$

 $y[1] = x[0]h[1] + x[1]h[0]$
 $y[2] = x[1]h[1] + x[2]h[0]$
 $y[3] = x[2]h[1] + x[3]h[0]$
 $y[4] = x[3]h[1] + x[4]h[0]$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = x[0]h[0]$$

 $y[1] = x[0]h[1] + x[1]h[0]$
 $y[2] = x[1]h[1] + x[2]h[0]$
 $y[3] = x[2]h[1] + x[3]h[0]$
 $y[4] = x[3]h[1] + x[4]h[0]$

• Circular convolution:
$$y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]$$

$$y[0] = x[3]h[1] + x[0]h[0] + x[1]h[3] + x[2]h[2]$$

 $y[1] = x[0]h[1] + x[1]h[0] + x[2]h[3] + x[3]h[2]$
 $y[2] = x[1]h[1] + x[2]h[0] + x[3]h[3] + x[0]h[2]$
 $y[3] = x[2]h[1] + x[3]h[0] + x[0]h[3] + x[1]h[2]$

Padding

- x[n] and h[n] are different lengths?
 - h[2] and h[3] are undefined in the previous slide
 - We will treat them as zeros
 - To do this, store h and x in bigger arrays
 - Pad them with enough zeros so they both have
 length at least N = x.length + h.length 1

Padding

- x[n] and h[n] are different lengths?
 - h[2] and h[3] are undefined in the previous slide
 - We will treat them as zeros
 - To do this, store h and x in bigger arrays
 - Pad them with enough zeros so they both have
 length at least N = x.length + h.length 1
- This will let us linearly convolve using circular convolution

Example: (Padding)

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

```
y[0] = x[0]h[0]
y[1] = x[0]h[1] + x[1]h[0]
y[2] = x[1]h[1] + x[2]h[0]
y[3] = x[2]h[1] + x[3]h[0]
y[4] = x[3]h[1] + x[4]h[0]
```

• Circular convolution:
$$y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \mod N]$$

$$y[0] = x[3]h[1] + x[0]h[0] + x[1]h[3] + x[2]h[2]$$

$$y[1] = x[0]h[1] + x[1]h[0] + x[2]h[3] + x[3]h[2]$$

$$y[2] = x[1]h[1] + x[2]h[0] + x[3]h[3] + x[0]h[2]$$

$$y[3] = x[2]h[1] + x[3]h[0] + x[0]h[3] + x[1]h[2]$$

Example: (Padding)

x[0..3], h[0..1]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Linear convolution:

N is now (4 + 2 - 1) = 5

Circular convolution:
$$y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \mod N]$$

$$y[0] = x[4]h[1] + x[0]h[0] + x[1]h[4] + x[2]h[3] + x[3]h[2]$$

$$y[1] = x[0]h[1] + x[1]h[0] + x[2]h[4] + x[3]h[3] + x[4]h[2]$$

$$y[2] = x[1]h[1] + x[2]h[0] + x[3]h[4] + x[4]h[3] + x[0]h[2]$$

$$y[3] = x[2]h[1] + x[3]h[0] + x[4]h[4] + x[0]h[3] + x[1]h[2]$$

$$y[4] = x[3]h[1] + x[4]h[0] + x[0]h[4] + x[1]h[3] + x[2]h[2]$$

Circular Convolution Theorem*

$$y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]$$

- Can be calculated by: IFFT(FFT(x) .* FFT(h))
- i.e.

$$\vec{X} = FFT(\vec{x})$$

 $\vec{H} = FFT(\vec{h})$

– For all i:

$$Y_i = X_i H_i$$

– Then:

$$\vec{y} = IFFT(\vec{Y})$$

Circular Convolution Theorem*

$$y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \bmod N]$$

- Can be calculated by: IFFT(FFT(x) .* FFT(h))
- i.e.

$$\vec{X} = FFT(\vec{x})$$
 O(n log n) Assume n > m
 $\vec{H} = FFT(\vec{h})$ O(m log m)

– For all i:

$$Y_i = X_i H_i$$
 O(n) Total: O(n log n)

– Then:

$$\vec{y} = IFFT(\vec{Y})$$
 O(n log n)

Summary

- Alternate algorithm for large impulse response convolution!
 - Serial: O(n log n) vs. O(mn)
 - Small vs. large m determines algorithm choice
 - Runtime does "carry over" to parallel situations (to some extent)

Homework 3, Part 1

- Implement FFT ("large-kernel") convolution
 - Use cuFFT for FFT/IFFT (if brave, try your own)
 - Use "batch" variable to save FFT calculations
 Correction: Good practice in general, but results in poor performance on Homework 3
 - Don't forget padding
 - Complex multiplication kernel:
 - Multiply the FFT values pointwise!

Complex numbers

- cufftComplex: cuFFT complex number type
 - Example usage:

```
cufftComplex a;
a.x = 3;  // Real part
a.y = 4;  // Imaginary part
```

Complex Multiplication:

$$(a + bi)(c + di) = (ac - bd) + (ad + bc)i$$

Homework 3, Part 2

- For a normalized Gaussian filter, output values cannot be larger than the largest input
- Not true in general

Low Pass Filter

Test Signal and Response

Normalization

- Amplitudes must lie in range [-1, 1]
 - Normalize s.t. maximum magnitude is 1 (or 1 ϵ)

How to find maximum amplitude?

Reduction

- This time, maximum (instead of sum)
 - Lecture 7 strategies
 - "Optimizing Parallel Reduction in CUDA" (Harris)

Homework 3, Part 2

- Implement GPU-accelerated normalization
 - Find maximum (reduction)
 - The max amplitude may be a negative sample
 - Divide by maximum to normalize

(Demonstration)

Rooms can be modeled as LTI systems!

Other notes

- Machines:
 - Normal mode: titan, haru, mako, mx, minuteman
 - Audio mode: titan, haru, mako

- Due date:
 - Wednesday (4/25), 3 PM