CS 179: GPU Programming

Lecture 9 / Homework 3

Recap

Some algorithms are “less obviously
parallelizable”:

— Reduction
— Sorts
— FFT (and certain recursive algorithms)

Parallel FFT structure (radix-2)

Bit-reversed access

cuFFT 1D example

fdefine X 262144

cuffeComplex *data host

= (cufftComplex®*)malloc(sizect (cuffrComplex) *ITX) ;
cuffrComplex *data back

= (cufftConplex®*)malloc(sizecf (cuffrComplex) *I1X) ;

cuffrtHandle plan;

cuffrComplex *datal;

cudaMalloc | (void**) adatal, sizeof(cuffcComplex) *IX):

cudaMemcpy (datal, data host, [X*sizeof (cufftComplex), cudaMemcpyHostToDevice):;

int batch = 1;
cufftPlanld(&plan, MNX, COFFI_C2C, batch);:

cufftExecC2C(plan, datal, datal, CUFFT FOEWARD):

Correction:

cufftExecC2C(plan, datal, datal, CUFFT_INVERSE): Remember to use
cufftDestroy(plan)
cudaMemcpy (data back, datal, HX#*sizeof (cufftComplex), cudaMemcpyDeviceToHost): when finished with

transforms

Today

e Homework 3

— Large-kernel convolution

Systems

e Given input signal(s), produce output signal(s)

Hyoid Bone Epiglottis I::,I

| Tllf) II El.i.’?

i

Thyrohyoid £}
Membrane | 4
L)
False Vocal = — Ventricle

Cords \ "\ <'

True Vocal . . e | Vocalis Muscle - ’
Cords Y 4 :
Thyroid \ ’ ' %

Cartilage

: Cricoid Cartilage

Trachea

LTI system review (Week 1)

e “Linear time-invariant” (LTl) systems

— Lots of them!

* Can be characterized entirely by “impulse
response” h|n]

e Qutput given from input by convolution:

yln] =) x[klh[n - k]

k=—o0

Parallelization

0.0)

ylnl =) x[klh[n - k]

k=—o0

* Convolution is parallelizable!

— Sequential pseudocode (ignoring boundary
conditions):

(set all y[1] to 0)
For (i from 0 through x.length - 1)
for (j from 0 through h.length - 1)
y[i] += (appropriate terms from x and h)

A problem...

* This worked for small impulse responses
—E.g.h[n],0£n<20in HW 1

* Homework 1 was “small-kernel convolution”:

— (Vocab alert: Impulse responses are often called
“kernels”!)

A problem...

Co

yln] =) x[klh[n — k]

k=—o0

e Sequential runtime: O(n*m)
— (n: size of x)
— (m: size of h)

— Troublesome for large m! (i.e. large impulse responses)

(set all y[i] to 0)
For (i from 0 through x.length - 1)
for (j from O through h.length - 1)
y[i] += (appropriate terms from x and h)

DFT/FFT

 Same problem with Discrete Fourier Transform!

N—1
def —2rikn /N
X,!; = § T, - € 2mikn /N ‘ Ec?

n=>0

e Successfully optimized and GPU-accelerated!
— O(n?) to O(n log n)

— Can we do the same here?

“Circular” convolution

e “equivalent” of convolution for periodic
signals

“Circular” convolution

 Linear convolution:

e Example
e x[0..3], h[0..1] vinl =), xlidhin =1
* Linear convolution:
y[0] = x[0]h[0] 0 ox0 x1x2x3 0 0

ohi1hO0 0 0 oo0oO

e Example
e x[0..3], h[0..1] vinl =), xlidhin =1
* Linear convolution:
y[0] = x[0]h[0] 0 ox0 x1x2x3 0 0

y[1] = x[0]h[1] + x[1]h[O] 6 e Ay e e e

X0 x1 x2 x3
hOhl 0 O

e x[0..3], h[0..1]
e Linear convolution:
0]

y[O]
y[1] = x|
y[2]

y[3] = x[2]

=X

N

|

0]
Ih[

0]h[1
1]h[1]
2]h[1

] + x[1]
+ X[2]

1] + x[3]

0 oXxO0x1x2x3 00
o o ohihO o0o0o0

X0 x1 x2 x3
hOhl 0 O

e x[0..3], h[0..1]

* Linear convolution:
0]
= x[0
1]
2
3

< < < <

y[O]

B W N R

=X

=X

= x[2]

= x[3]

N

1
N[1]
"

1

0
Jh(1]

+ X

1+ x
]+ x

1] + x

B W N R

)
S e e 9.

0 oXxO0x1x2x3 00
o0 0 o ohi1hOoo

X0 x1 x2 x3 .
Example:
hohi 0 O
. x[0..3], h[0..1] ylnl = > x[klh[n - K
e Linear convolution: A
yO=xOhO S 0 oxO0x1x2x3 0o
y[1] = x[0]h[1] + x[1]h[O] oh1h0 o0 0 000
y[2] = x[1]h[1] + x[2]h[O]
y[3] = x[2]h[1] + x[3]h[O]
y[4] = x[3]h[1] +x[4]h[0]
. _ylnl=) xlkI A~ k) mod N]
 Circular convolution: k=0
y[0] = x[3]h[1] + x[O]h[O] x0 x1 x2 x3
y[1] = x[0]h[1] + x[1]h[O] hO o ohl
y[2] = x[1]h[1] + x[2]h[O]
y[3] = x[2]h[1] + x[3]h[O]

Padding

* x[n] and h[n] are different lengths?
— h[2] and h[3] are undefined in the previous slide
— We will treat them as zeros
— To do this, store h and x in bigger arrays

— Pad them with enough zeros so they both have
length at least N = x.length + h.length - 1

Padding

* x[n] and h[n] are different lengths?
— h[2] and h[3] are undefined in the previous slide
— We will treat them as zeros
— To do this, store h and x in bigger arrays

— Pad them with enough zeros so they both have
length at least N = x.length + h.length - 1

* This will let us linearly convolve using circular
convolution

Example: (Padding)

* x[0..3], h[0..1]

* Linea
Yl

< < < <

e Circu

r convolution:

0

< < <

BXN PO

1
2]
3

=X
=X
=X
=X
=X

=X

=X

W N PO

3
] =x[0]h]

1
] =x[2]h]

h

> 3 5T
~PRrRR

ar convo
0] =x[

h

h
h
h

0

ution
1]

+ X
+ X
+ X
+ X

+ X

1] + x
1]
1] + x

+ X

B wnN R

W NP o

> > S S
[SRENENS)

oo

ylnl =) xlklhfn - k]

k=—oo0

1

yln] = z x[k] h[(n — k) mod N]

> > S5 >
[SRENENS)

k=0

Example: (Padding)

oo

o X[O3]; h[Ol] y[n] = Z x[k]h[n — k]
* Linear convolution: k=—oo
y[0] = x[0]h[O]
v[1] = x[0]h[1] + x[1]h[O
y[2] = x[1]h[1] + x[2]h[O] |
v[3] = x[2]h[1] + x[3]h[O] Nisnow (4+2—-1)=5
y[4] = x[3]h[1] + x[4]h[O \l
N-1

yln] = x[k] h[(n — k) mod N]

e Circular convolution: L
y[0] = x[0]h[O]
y[1] = x[0]h[1] + x[1]h[O]
y[2] = x[1]h[1] + x[2]h[O]
y[3] =x[2]h[1] + x[3]h[O]
y[4] = x[3]h[1] + x[4]h[O

Circular Convolution Theorem*

2

-1

yln] = x[k] h[(n — k) mod N]
0

xl
Il

* Can be calculated by: IFFT(FFT(x).* FFT(h))
* |.e.

X = FFT(X)
H = FFT(h)
— For all i
Yy = XiH;
— Then:

y = IFFT(Y)

* DFT case

Circular Convolution Theorem*

* Can be calculated by:

° |.e.

— For all i:

— Then:

2

-1

yln] = x[k] h[(n — k) mod N]

&
Il

0

X = FFT(X)
H = FFT(h)
Yy = XiH;

y = IFFT(Y)

IFFT(FFT(x) .* FFT(h))

O(n |Og n) Assume n >m
O(m log m)

O(n) Total:
O(n log n)
O(n log n)

* DFT case

Summary

e Alternate algorithm for large impulse response
convolution!
— Serial: O(n log n) vs. O(mn)
* Small vs. large m determines algorithm choice

* Runtime does “carry over” to parallel situations (to
some extent)

Homework 3, Part 1

* Implement FFT (“large-kernel”) convolution

— Use cuFFT for FFT/IFFT (if brave, try your own)

Correction: Good practice in general, but results in poor
performance on Homework 3

* Don’t forget padding

— Complex multiplication kernel:
* Multiply the FFT values pointwise!

Complex numbers

e cufftComplex: cuFFT complex number type

— Example usage:

cufftComplex a;
a.x = 3; // Real part
a.y = 4; // Imaginary part

 Complex Multiplication:
(a + bi)(c + di) = (ac - bd) + (ad + bc)i

Homework 3, Part 2

* For a normalized Gaussian filter, output values
cannot be larger than the largest input

O

* Not true in general

Low Pass Filter Test Signal and Response

Normalization

 Amplitudes must lie in range [-1, 1]

— Normalize s.t. maximum magnitude is 1 (or 1 - €)

* How to find maximum amplitude?

Reduction

* This time, maximum (instead of sum)
— Lecture 7/ strategies
— “Optimizing Parallel Reduction in CUDA” (Harris)

Values (sharedmemory)|10| 1 |8 |-1|0 | 2|3 |5 |=2|3]2 |70

Step 1 Thread 1 ———
i IDs =
Stride 8 @/3 @) (5) (6)

Values | 8 |-2|10| 6 |0 |9 |3 |7 |-2|-3| 2|7 |0

//
Step 2 Thread T_1T
Stride 4 Ds (0 &3 @/ 3
8 |7

Values 13|13(0 |9 (3 |7 |-2|-3|2 |7 |0

Step 3 Thread
Stride 2 IDs

Values |21 (20|13 |13 0 |9 (3 |7 |-2|-3|2 |7 |0

Step 4 Thread /%
Stride 1 IDs

Values |41 |20 |13 (13| 0 (9 | 3 |7 |(-2|-3|2 |7 | O

Homework 3, Part 2

* Implement GPU-accelerated normalization

— Find maximum (reduction)
* The max amplitude may be a negative sample

— Divide by maximum to normalize

(Demonstration)

e Rooms can be modeled as LTI systems!

Other notes

 Machines:
— Normal mode: titan, haru, mako, mx, minuteman
— Audio mode: titan, haru, mako

* Due date:
— Wednesday (4/25), 3 PM

