CS I79: LECTURE I5

INTRODUCTIONTO CUDNN (CUDA DEEP NEURAL NETS)

LAST TIME

- We derived the minibatch stochastic gradient descent algorithm for neural networks, i.e. $\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)}-\frac{1}{k} \eta\left(\mathbf{X}^{(\ell-1)^{\prime}} \Delta^{(\ell)^{T}}\right)$
- Mostly matrix multiplications to compute $\Delta^{(\ell)}$
- One other derivative, $\theta^{\prime}\left(\boldsymbol{Z}_{i j}^{(\ell)}\right)$
- cuBLAS (Basic Linear Algebra Subroutines) already does matrix multiplications for us
- cuDNN will take care of these "other" derivatives for us

TODAY

- Using cuDNN to do deep neural networks

SETTING UP CUDNN

- cudnnHandle_t
- Like cuBLAS, you need to maintain cuDNN library context
- Call cudnnCreate (cudnnHandle_t *handle) to initialize the context
- Call cudnnDestroy (cudnnHandle_t handle) to clean up the context

HANDLING ERRORS

- Almost every function we will talk about today returns a cudnnStatus_t (an enum saying whether a cuDNN call was successful or how it failed)
- Like standard CUDA, we will provide you with a checkCUDNN (cudnnStatus_t status) wrapper function that parses any error statuses for you
- Make sure you wrap every function call with this function so you know where and how your code breaks!

REMINDERS ABOUT CUDA

- Pattern of allocate \rightarrow initialize \rightarrow free (reiterate here for students who may not be as comfortable with C++)

DATA REPRESENTATION

- cudnnTensor_t
- For the purposes of cuDNN (and much of machine learning), a tensor is just a multidimensional array
- A wrapper around a "flattened" 3-8 dimensional array
- Used to represent minibatches of data
- For now, we will be using "flattened" 4D arrays to represent each minibatch X

DATA REPRESENTATION

- cudnnTensor_t
- Consider the case where each individual training example x is just a vector (so the last two axes will have size 1 each)
- Then $X[n, c, 0,0]$ is the value of component c of example n
- If axis $\langle k\rangle$ has size size<k>, then $X[n, c, h, w]$ (pseudocode) is actually $X[n *$ size $0 *$ size1*size2 $+c *$ size $0 *$ size1 + h*size0 + w]

DATA REPRESENTATION

- cudnnTensor_t
- More generally, a single training example may itself be a matrix or a tensor.
- For example, in a minibatch of RGB images, we may have $X[n, c, h, w]$, where n is the index of an image in the minibatch, c is the channel $(R=0, G=1, B=2)$, and h and w index a pixel (h, w) in the image (h and w are height and width)

DATA REPRESENTATION

- cudnnTensorDescriptor \qquad
- Allocate by calling cudnnCreateTensorDescriptor(cudnnTensorDescriptor_t *desc)
- The ordering of array axes is defined by an enum called a cudnnTensorFormat_t (since we are indexing as $\mathrm{X}[\mathrm{n}, \mathrm{c}, \mathrm{h}, \mathrm{w}]$, we will use CUDNN_TENSOR_NCHW)
- A cudnnDataType_t specifies the data type of the tensor (we will use CUDNN_DATA_FLOAT)

DATA REPRESENTATION

- cudnnTensorDescriptor_t
- Initialize by calling cudnnSetTensor4dDescriptor (cudnnTensorDescriptor_t desc, cudnnTensorFormat_t format, cudnnDataType_t dataType, int n, int c, int h, int $w)$
- Free by calling cudnnDestroyTensorDescriptor (cudnnTensorDescriptor_t desc)

DATA REPRESENTATION

- cudnnTensorDescriptor_t
- Get the contents by calling cudnnGetTensor4dDescriptor (cudnnTensorDescriptor_t desc, cudnnDataType_t dataType, int *n, int *c, int *h, int *w, int *nStr, int *cStr, int *hStr, int *wStr)
- Standard trick of returning by setting output parameters
- Don't worry about the strides nStr, cStr, hStr, wStr

RELATION TO ASSIGNMENT 5

- Forward pass (Algorithm)
- For each minibatch $\left(\mathbf{X}^{(0)}, \mathbf{Y}\right)$ of k training examples
- (Each example and its label are a column in matrices $\mathbf{X}^{(0)}$ and \mathbf{Y} respectively)
- For each ℓ counting up from 1 to L
- Compute matrix $\mathbf{Z}^{(\ell)}=\mathbf{W}^{(\ell)^{T}} \mathbf{X}^{(\ell-1)^{\prime}}$
- Compute matrix $\mathbf{X}^{(\ell)}=\theta^{(\ell)}\left(\mathbf{Z}^{(\ell)}\right)$
- Our model's prediction is $\mathbf{X}^{(L)}$

RELATION TO ASSIGNMENT 5

- Forward pass (Implementation)
- Calculate the expected sizes of the inputs $\mathbf{X}^{(\ell-1)}$ and outputs $\mathbf{Z}^{(\ell)}$ of each layer and allocate arrays of the appropriate size
- Input $\mathbf{X}^{(\ell-1)}$ has shape $d_{\ell-1} \times k$
- Weight matrix $\mathbf{W}^{(\ell)}$ has shape $d_{\ell-1} \times d_{\ell}$
- Outputs $\mathbf{Z}^{(\ell)}=\mathbf{W}^{(\ell)^{T}} \mathbf{X}^{(\ell-1)^{\prime}}$ and $\mathbf{X}^{(\ell)}=\theta\left(\mathbf{Z}^{(\ell)}\right)$ have shape $d_{\ell} \times k$
- Initialize tensor descriptors for each $\mathbf{X}^{(\ell)}$ and $\mathbf{Z}^{(\ell)}$

RELATION TO ASSIGNMENT 5

- Forward pass (Implementation)
- Note that cuBLAS puts matrices in column-major order, so $\mathbf{X}^{(\ell)}$ and $\mathbf{Z}^{(\ell)}$ will be tensors of shape ($k, d_{\ell}, 1,1$)
- In this assignment, the skeleton code we provide will handle the bias terms for you (this is the extra $x_{0}=1$ term that we've been carrying in $x^{\prime}=(1, x)$ this whole time)
- Just remember that when we write $\mathbf{X}^{(\ell)^{\prime}}$, we are implicitly including this bias term!

RELATIONTO ASSIGNMENT 5

- Backward pass (Algorithm)
- Initialize gradient matrix $\Delta^{(L)}=\mathbf{X}^{(L)}-\mathbf{Y}$
- For each ℓ counting down from L to 1
- Calculate $\mathbf{A}^{(\ell)}=\nabla_{\mathbf{x}^{(\ell-1)^{\prime}}}[J]=\mathbf{W}^{(\ell)} \Delta^{(\ell)}$
- Calculate $\Delta_{i j}^{(\ell-1)}=\frac{\partial J}{\partial \mathbf{z}_{i j}^{(\ell-1)}}=\mathbf{A}_{i j}^{(\ell)} \theta^{(\ell-1)^{\prime}}\left(\mathbf{Z}_{i j}^{(\ell-1)}\right)$ for each
$i=1, \ldots, k$ and $j=1, \ldots, d_{\ell-1}$
- Update $\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)}-\frac{1}{k} \eta\left(\mathbf{X}^{(\ell-1)^{\prime}} \Delta^{(\ell)^{T}}\right)$

RELATION TO ASSIGNMENT 5

- Backward pass (Implementation)
- Each $\Delta^{(\ell)}$ matrix has the same shape as the input $\mathbf{X}^{(\ell)}$ to its corresponding layer, i.e. $k \times d_{\ell}$
- Have each $\Delta^{(\ell)}$ share a tensor descriptor with its corresponding $\mathbf{X}^{(\ell)}$
- Update each $\mathbf{W}^{(\ell)}$ using cuBLAS's GEMM
- cuDNN needs the associated tensor descriptor when applying the derivative of the activation/nonlinearity θ

ACTIVATION FUNCTIONS

- cudnnActivationDescriptor_t
- Allocate with cudnnCreateActivationDescriptor(cudnnActivationDescriptor_t *desc)
- Destroy with cudnnDestroyActivationDescriptor(cudnnActivationDescriptor_t desc)

ACTIVATION FUNCTIONS

- cudnnActivationMode_t
- An enum that specifies the type of activation we should apply after any given layer
- Specify as CUDNN_ACTIVATION_<type>
- <type> can be SIGMOID, RELU, TANH, CLIPPED RELU, or ELU (the last 2 are fancier activations that address some of the issues with ReLU); use RELU for this assignment

ACTIVATION FUNCTIONS

- Graphs of activations as a reminder

ACTIVATION FUNCTIONS

- cudnnNanPropagation_t
- An enum that specifies whether to propagate NAN's
- Use CUDNN_PROPAGATE_NAN for this assignment

ACTIVATION FUNCTIONS

- cudnnActivationDescriptor_t
- Set with cudnnSetActivationDescriptor (cudnnActivationDescriptor_t desc, cudnnActivationMode_t mode, cudnnNanPropagation_t reluNanOpt, double coef)
- coef is relevant only for clipped ReLU and ELU activations, so just use 0.0 for this assignment

ACTIVATION FUNCTIONS

- cudnnActivationDescriptor_t
- Get contents with cudnnGetActivationDescriptor(cudnnActivationDescriptor_t desc, cudnnActivationMode_t *mode, cudnnNanPropagation_t *reluNanOpt, double *coef)
- coef is relevant only for clipped ReLU and ELU activations, so just give it a reference to a double for throwaway values

ACTIVATION FUNCTIONS

- Forward pass for an activation $\theta^{(\ell)}$
- Computes tensor $\mathrm{x}=\operatorname{alpha}[0] * \theta^{(\ell)}(\mathrm{z})+\operatorname{beta}[0] * x$
- Note: numeric * means element-wise multiplication
- cudnnActivationForward(cudnnHandle_t handle, cudnnActivationDescriptor_t activationDesc, void *alpha,
cudnnTensorDescriptor_t zDesc, void *z, void *beta,
cudnnTensorDescriptor_t xDesc, void *x)

ACTIVATION FUNCTIONS

- Backward pass for an activation $\theta^{(\ell-1)}$
- Computes $\mathrm{dz}=\operatorname{alpha}[0] * \nabla_{\mathrm{z}} \theta^{(\ell-1)}(\mathrm{z}) * \mathrm{dx}+\operatorname{beta}[0] * \mathrm{dz}$
- cudnnActivationBackward(cudnnHandle_t handle, cudnnActivationDescriptor_t activationDesc, void *alpha, cudnnTensorDescriptor_t xDesc, void *x, cudnnTensorDescriptor_t dxDesc, void *dx, void *beta,
cudnnTensorDescriptor_t zDesc, void *z, cudnnTensorDescriptor_t dzDesc, void *dz)

ACTIVATION FUNCTIONS

- Backward pass for an activation $\theta^{(\ell-1)}$
- Computes $\mathrm{dz}=\operatorname{alpha}[0] * \nabla_{\mathrm{z}} \theta^{(\ell-1)}(\mathrm{z}) * \mathrm{dx}+\operatorname{beta}[0] * \mathrm{dz}$
- These are element-wise products, not matrix products!
- x : output of the activation, $\mathbf{X}^{(\ell-1)}=\theta^{(\ell-1)}\left(\mathbf{Z}^{(\ell-1)}\right)$
- dx : derivative wrt x, $\mathbf{A}^{(\ell)}=\nabla_{\mathbf{X}^{(\ell-1)}}[J]=\mathbf{W}^{(\ell)} \Delta^{(\ell)^{T}}$
- z : input to the activation, $\mathbf{Z}^{(\ell-1)}$
- dz: tensor to accumulate $\Delta^{(\ell-1)}=\nabla_{\mathbf{Z}^{(\ell-1)}}[J]$ as output

SOFTMAX/CROSS-ENTROPY LOSS

- Consider a single training example $x^{(0)}$ transformed as $x^{(0)} \rightarrow Z^{(1)} \rightarrow x^{(1)} \rightarrow \cdots \rightarrow Z^{(L)} \rightarrow x^{(L)}$
- The softmax function is $x_{i}^{(L)}=p_{i}\left(z^{(L)}\right)=\frac{\exp \left(z_{i}^{(L)}\right)}{\sum_{j=1}^{d_{L}} \exp \left(z_{j}^{(L)}\right)}$
- The cross-entropy loss is $J\left(z^{(L)}\right)=-\sum_{i=1}^{d_{L}} y_{i} \ln \left(p_{i}\left(z^{(L)}\right)\right.$
- Gives us a notion of how good our classifier is

SOFTMAX/CROSS-ENTROPY LOSS

- Forward pass
- Computes tensor $x=\operatorname{alpha[0]} * \operatorname{softmax}(z)+\operatorname{beta}[0] * x$
- cudnnSoftmaxForward (cudnnHandle_t handle, cudnnSoftmaxAlgorithm_t alg, cudnnSoftmaxMode_t mode, void *alpha, cudnnTensorDescriptor_t zDesc, void *z, void *beta, cudnnTensorDescriptor_t xDesc, void *x)

SOFTMAX/CROSS-ENTROPY LOSS

- cudnnSoftmaxAlgorithm_t
- Enum that specifies how to do compute the softmax
- Use CUDNN_SOFTMAX_ACCURATE for this class (scales everything by $\max _{i}\left(z_{i}^{(L)}\right)$ to avoid overflow)
- The other options are CUDNN_SOFTMAX_FAST (less numerically stable) and CUDNN_SOFTMAX_LOG (computes the natural log of the softmax function)

SOFTMAX/CROSS-ENTROPY LOSS

- cudnnSoftmaxMode_t
- Enum that specifies over which data to compute the softmax
- CUDNN_SOFTMAX_MODE_INSTANCE does it over the entire input (sum over all c, h, w for a single n in $X[n, c, h, w]$)
- CUDNN_SOFTMAX_MODE_CHANNEL does it over each channel (sum over all c for each n, h, w triple in $X[n, c, h, w]$)
- Since h and w are both size 1 here, either is fine to use

SOFTMAX/CROSS-ENTROPY LOSS

- Backward pass
- cuDNN has a built-in function to compute the gradient of the softmax activation on its own
- However, when coupled with the cross-entropy loss, we get the following gradient wrt $\mathbf{Z}^{(L)}: \Delta^{(L)}=\nabla_{\mathbf{z}^{(L)}}[J]=\mathbf{X}^{(L)}-\mathbf{Y}$
- This is easier and faster to compute manually!
- Therefore, you will implement the kernel for this yourself

SOFTMAX WITH OTHER LOSSES

- Backward pass
- For different losses, use the following function:
- cudnnSoftmaxBackward(cudnnHandle_t handle, cudnnSoftmaxAlgorithm_t alg, cudnnSoftmaxMode_t mode, void *alpha,
cudnnTensorDescriptor_t xDesc, void *x, cudnnTensorDescriptor_t dxDesc, void *dx, void *beta,
cudnnTensorDescriptor_t dzDesc, void *dz)

SOFTMAX WITH OTHER LOSSES

- Backward pass
- As with other backwards functions in cuDNN, this function computes the tensor $\mathrm{dz}=$ alpha[0] $* \nabla_{\mathrm{z}} J(\mathrm{z})+$ beta[0] $* \mathrm{dz}$
- x is the output of the softmax function and $d x$ is the derivative of our loss function J wrt \times (cuDNN uses them internally)
- Note that unlike backwards activations, we don't need a z input parameter (where z is the input to the softmax function)

SUMMARY

- Defining data in terms of tensors
- Using those tensors as arguments to cuDNN's built-in functions for both the forwards and backwards passes through a neural network
- You can find more details about everything we discussed in NVIDIA's official cuDNN developer guide
- Next week: convolutional neural nets

