
CS 179: LECTURE 15

INTRODUCTION TO CUDNN

(CUDA DEEP NEURAL NETS)



LAST TIME

 We derived the minibatch stochastic gradient descent algorithm 

for neural networks, i.e. 𝐖 ℓ ← 𝐖 ℓ −
1

𝑘
𝜂 𝐗 ℓ−1 ′

Δ ℓ 𝑇

 Mostly matrix multiplications to compute Δ ℓ

 One other derivative, 𝜃′ 𝒁𝑖𝑗
ℓ

 cuBLAS (Basic Linear Algebra Subroutines) already does matrix 

multiplications for us

 cuDNN will take care of these “other” derivatives for us



TODAY

 Using cuDNN to do deep neural networks



SETTING UP CUDNN

 cudnnHandle_t

 Like cuBLAS, you need to maintain cuDNN library context

 Call cudnnCreate(cudnnHandle_t *handle)

to initialize the context

 Call cudnnDestroy(cudnnHandle_t handle)

to clean up the context



HANDLING ERRORS

 Almost every function we will talk about today returns a 
cudnnStatus_t (an enum saying whether a cuDNN call 

was successful or how it failed)

 Like standard CUDA, we will provide you with a 
checkCUDNN(cudnnStatus_t status) wrapper 

function that parses any error statuses for you

 Make sure you wrap every function call with this function so 

you know where and how your code breaks!



REMINDERS ABOUT CUDA

 Pattern of allocate → initialize → free (reiterate here for 

students who may not be as comfortable with C++)



DATA REPRESENTATION

 cudnnTensor_t

 For the purposes of cuDNN (and much of machine learning), a 

tensor is just a multidimensional array

 A wrapper around a “flattened” 3-8 dimensional array

 Used to represent minibatches of data

 For now, we will be using “flattened” 4D arrays to represent 
each minibatch X



DATA REPRESENTATION

 cudnnTensor_t

 Consider the case where each individual training example 𝑥 is 

just a vector (so the last two axes will have size 1 each)

 Then X[n,c,0,0] is the value of component c of example n

 If axis <k> has size size<k>, then X[n,c,h,w] (pseudocode) 

is actually X[n*size0*size1*size2 + c*size0*size1 

+ h*size0 + w]



DATA REPRESENTATION

 cudnnTensor_t

 More generally, a single training example may itself be a matrix 

or a tensor.

 For example, in a minibatch of RGB images, we may have 
X[n,c,h,w], where n is the index of an image in the 

minibatch, c is the channel (R = 0, G = 1, B = 2), and h and w

index a pixel (h, w) in the image (h and w are height and width)



DATA REPRESENTATION

 cudnnTensorDescriptor_t

 Allocate by calling cudnnCreateTensorDescriptor(

cudnnTensorDescriptor_t *desc)

 The ordering of array axes is defined by an enum called a 

cudnnTensorFormat_t (since we are indexing as 

X[n,c,h,w], we will use CUDNN_TENSOR_NCHW)

 A cudnnDataType_t specifies the data type of the tensor 

(we will use CUDNN_DATA_FLOAT)



DATA REPRESENTATION

 cudnnTensorDescriptor_t

 Initialize by calling cudnnSetTensor4dDescriptor( 

cudnnTensorDescriptor_t desc, 

cudnnTensorFormat_t format, 

cudnnDataType_t dataType,

int n, int c, int h, int w)

 Free by calling cudnnDestroyTensorDescriptor( 

cudnnTensorDescriptor_t desc)



DATA REPRESENTATION

 cudnnTensorDescriptor_t

 Get the contents by calling cudnnGetTensor4dDescriptor( 

cudnnTensorDescriptor_t desc,

cudnnDataType_t dataType,

int *n, int *c, int *h, int *w,

int *nStr, int *cStr, int *hStr, int *wStr)

 Standard trick of returning by setting output parameters

 Don’t worry about the strides nStr, cStr, hStr, wStr



RELATION TO ASSIGNMENT 5
 Forward pass (Algorithm)

 For each minibatch (𝐗 0 , 𝐘) of 𝑘 training examples

 (Each example and its label are a column in matrices 𝐗 0 and 𝐘
respectively)

 For each ℓ counting up from 1 to 𝐿

 Compute matrix 𝐙 ℓ = 𝐖 ℓ 𝑇
𝐗 ℓ−1 ′

 Compute matrix 𝐗 ℓ = 𝜃 ℓ 𝐙 ℓ

 Our model’s prediction is 𝐗 𝐿



RELATION TO ASSIGNMENT 5

 Forward pass (Implementation)

 Calculate the expected sizes of the inputs 𝐗 ℓ−1 and outputs 

𝐙 ℓ of each layer and allocate arrays of the appropriate size

 Input 𝐗 ℓ−1 has shape 𝑑ℓ−1 × 𝑘

 Weight matrix 𝐖 ℓ has shape 𝑑ℓ−1 × 𝑑ℓ

 Outputs 𝐙 ℓ = 𝐖 ℓ 𝑇
𝐗 ℓ−1 ′

and 𝐗 ℓ = 𝜃 𝐙 ℓ have shape 
𝑑ℓ × 𝑘

 Initialize tensor descriptors for each 𝐗 ℓ and 𝐙 ℓ



RELATION TO ASSIGNMENT 5
 Forward pass (Implementation)

 Note that cuBLAS puts matrices in column-major order, so 

𝐗 ℓ and 𝐙 ℓ will be tensors of shape (𝑘, 𝑑ℓ, 1, 1)

 In this assignment, the skeleton code we provide will handle 

the bias terms for you (this is the extra 𝑥0 = 1 term that we’ve 

been carrying in 𝑥′ = (1, 𝑥) this whole time)

 Just remember that when we write 𝐗 ℓ ′
, we are implicitly 

including this bias term!



RELATION TO ASSIGNMENT 5

 Backward pass (Algorithm)

 Initialize gradient matrix Δ 𝐿 = 𝐗 𝐿 − 𝐘

 For each ℓ counting down from 𝐿 to 1

 Calculate 𝐀 ℓ = ∇
𝐗 ℓ−1 ′ 𝐽 = 𝐖 ℓ Δ ℓ

 Calculate Δ𝑖𝑗
ℓ−1

=
𝜕𝐽

𝜕𝐙𝑖𝑗
ℓ−1 = 𝐀𝑖𝑗

ℓ
𝜃 ℓ−1 ′

𝐙𝑖𝑗
ℓ−1

for each

𝑖 = 1,… , 𝑘 and 𝑗 = 1,… , 𝑑ℓ−1

 Update 𝐖 ℓ ← 𝐖 ℓ −
1

𝑘
𝜂 𝐗 ℓ−1 ′

Δ ℓ 𝑇



RELATION TO ASSIGNMENT 5

 Backward pass (Implementation)

 Each Δ ℓ matrix has the same shape as the input 𝐗 ℓ to its 

corresponding layer, i.e. 𝑘 × 𝑑ℓ

 Have each Δ ℓ share a tensor descriptor with its 

corresponding 𝐗 ℓ

 Update each 𝐖 ℓ using cuBLAS’s GEMM

 cuDNN needs the associated tensor descriptor when 

applying the derivative of the activation/nonlinearity 𝜃



ACTIVATION FUNCTIONS

 cudnnActivationDescriptor_t

 Allocate with cudnnCreateActivationDescriptor( 
cudnnActivationDescriptor_t *desc)

 Destroy with cudnnDestroyActivationDescriptor( 
cudnnActivationDescriptor_t desc)



ACTIVATION FUNCTIONS

 cudnnActivationMode_t

 An enum that specifies the type of activation we should 

apply after any given layer

 Specify as CUDNN_ACTIVATION_<type>

 <type> can be SIGMOID, RELU, TANH, CLIPPED_RELU, 

or ELU (the last 2 are fancier activations that address some 

of the issues with ReLU); use RELU for this assignment



ACTIVATION FUNCTIONS

 Graphs of activations as a reminder



ACTIVATION FUNCTIONS

 cudnnNanPropagation_t

 An enum that specifies whether to propagate NAN’s

 Use CUDNN_PROPAGATE_NAN for this assignment



ACTIVATION FUNCTIONS

 cudnnActivationDescriptor_t

 Set with cudnnSetActivationDescriptor( 
cudnnActivationDescriptor_t desc, 

cudnnActivationMode_t mode, 

cudnnNanPropagation_t reluNanOpt,

double coef)

 coef is relevant only for clipped ReLU and ELU 

activations, so just use 0.0 for this assignment



ACTIVATION FUNCTIONS

 cudnnActivationDescriptor_t

 Get contents with cudnnGetActivationDescriptor( 
cudnnActivationDescriptor_t desc, 

cudnnActivationMode_t *mode, 

cudnnNanPropagation_t *reluNanOpt,

double *coef)

 coef is relevant only for clipped ReLU and ELU 
activations, so just give it a reference to a double for 
throwaway values



ACTIVATION FUNCTIONS

 Forward pass for an activation 𝜃 ℓ

 Computes tensor x = alpha[0] * 𝜃 ℓ (z) + beta[0] * x

 Note: numeric * means element-wise multiplication

 cudnnActivationForward(

cudnnHandle_t handle, 

cudnnActivationDescriptor_t activationDesc,

void *alpha,

cudnnTensorDescriptor_t zDesc, void *z, 

void *beta,

cudnnTensorDescriptor_t xDesc, void *x)



ACTIVATION FUNCTIONS

 Backward pass for an activation 𝜃 ℓ−1

 Computes dz = alpha[0] * ∇z𝜃
ℓ−1 (z) * dx + beta[0] * dz

 cudnnActivationBackward(

cudnnHandle_t handle, 

cudnnActivationDescriptor_t activationDesc,

void *alpha,

cudnnTensorDescriptor_t xDesc,  void *x,

cudnnTensorDescriptor_t dxDesc, void *dx, 

void *beta, 

cudnnTensorDescriptor_t zDesc,  void *z,

cudnnTensorDescriptor_t dzDesc, void *dz)



ACTIVATION FUNCTIONS

 Backward pass for an activation 𝜃 ℓ−1

 Computes dz = alpha[0] * ∇z𝜃
ℓ−1 (z) * dx + beta[0] * dz

 These are element-wise products, not matrix products!

 x: output of the activation, 𝐗 ℓ−1 = 𝜃 ℓ−1 𝐙 ℓ−1

 dx: derivative wrt x, 𝐀 ℓ = ∇𝐗 ℓ−1 𝐽 = 𝐖 ℓ Δ ℓ 𝑇

 z: input to the activation, 𝐙 ℓ−1

 dz: tensor to accumulate Δ ℓ−1 = ∇𝐙 ℓ−1 𝐽 as output



SOFTMAX/CROSS-ENTROPY LOSS

 Consider a single training example 𝑥 0 transformed as 

𝑥 0 → 𝑧 1 → 𝑥 1 → ⋯ → 𝑧 𝐿 → 𝑥 𝐿

 The softmax function is 𝑥𝑖
𝐿
= 𝑝𝑖 𝑧

𝐿 =
exp 𝑧𝑖

𝐿

σ
𝑗=1

𝑑𝐿 exp 𝑧𝑗
𝐿

 The cross-entropy loss is 𝐽 𝑧 𝐿 = −σ𝑖=1
𝑑𝐿 𝑦𝑖 ln 𝑝𝑖(𝑧

𝐿

 Gives us a notion of how good our classifier is



SOFTMAX/CROSS-ENTROPY LOSS

 Forward pass

 Computes tensor x = alpha[0] * softmax(z) + beta[0] * x

 cudnnSoftmaxForward(cudnnHandle_t handle,

cudnnSoftmaxAlgorithm_t alg,

cudnnSoftmaxMode_t mode, 

void *alpha,

cudnnTensorDescriptor_t zDesc, void *z,

void *beta,

cudnnTensorDescriptor_t xDesc, void *x)



SOFTMAX/CROSS-ENTROPY LOSS

 cudnnSoftmaxAlgorithm_t

 Enum that specifies how to do compute the softmax

 Use CUDNN_SOFTMAX_ACCURATE for this class (scales 

everything by max
𝑖

𝑧𝑖
𝐿

to avoid overflow)

 The other options are CUDNN_SOFTMAX_FAST (less 

numerically stable) and CUDNN_SOFTMAX_LOG (computes the 

natural log of the softmax function)



SOFTMAX/CROSS-ENTROPY LOSS

 cudnnSoftmaxMode_t

 Enum that specifies over which data to compute the softmax

 CUDNN_SOFTMAX_MODE_INSTANCE does it over the entire 

input (sum over all c, h, w for a single n in X[n,c,h,w])

 CUDNN_SOFTMAX_MODE_CHANNEL does it over each channel 

(sum over all c for each n, h, w triple in X[n,c,h,w])

 Since h and w are both size 1 here, either is fine to use



SOFTMAX/CROSS-ENTROPY LOSS

 Backward pass

 cuDNN has a built-in function to compute the gradient of the 

softmax activation on its own

 However, when coupled with the cross-entropy loss, we get 

the following gradient wrt 𝐙 𝐿 : Δ 𝐿 = ∇𝐳 𝐿 𝐽 = 𝐗 𝐿 − 𝐘

 This is easier and faster to compute manually!

 Therefore, you will implement the kernel for this yourself



SOFTMAX WITH OTHER LOSSES

 Backward pass

 For different losses, use the following function:

 cudnnSoftmaxBackward(cudnnHandle_t handle,

cudnnSoftmaxAlgorithm_t alg,

cudnnSoftmaxMode_t mode,

void *alpha,

cudnnTensorDescriptor_t xDesc,  void *x, 

cudnnTensorDescriptor_t dxDesc, void *dx,

void *beta,

cudnnTensorDescriptor_t dzDesc, void *dz)



SOFTMAX WITH OTHER LOSSES

 Backward pass

 As with other backwards functions in cuDNN, this function 

computes the tensor dz = alpha[0] * ∇z𝐽(z) + beta[0] * dz

 x is the output of the softmax function and dx is the derivative 

of our loss function 𝐽 wrt x (cuDNN uses them internally)

 Note that unlike backwards activations, we don’t need a z 

input parameter (where z is the input to the softmax function)



SUMMARY

 Defining data in terms of tensors

 Using those tensors as arguments to cuDNN’s built-in 

functions for both the forwards and backwards passes 

through a neural network

 You can find more details about everything we discussed in 

NVIDIA’s official cuDNN developer guide

 Next week: convolutional neural nets


