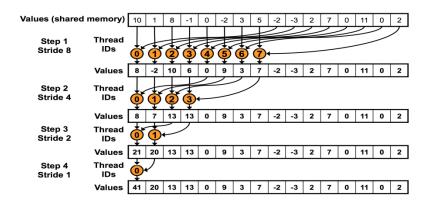
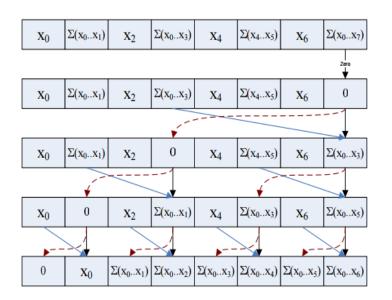
CS 179: GPU Programming

Lecture 8

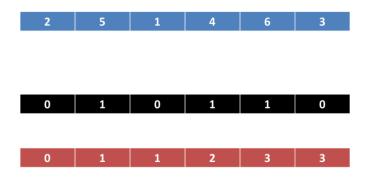
Last time





GPU-accelerated:

- Reduction
- Prefix sum
- Stream compaction
- Sorting (quicksort)

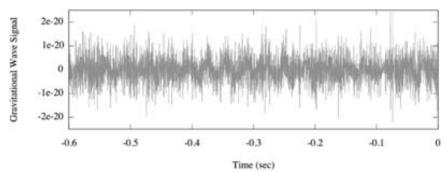


Today

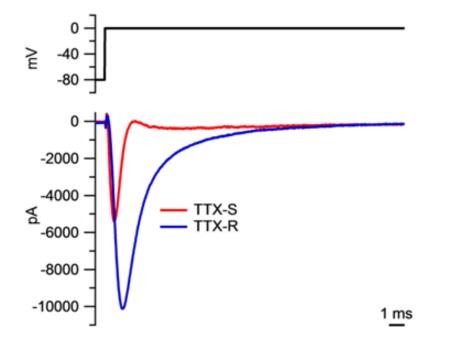
- GPU-accelerated Fast Fourier Transform
- cuFFT (FFT library)
- This lecture details behind FFT algorithm.
 Shows why you shouldn't re-invent the wheel!
 - Don't implement what a library already does for you, if you don't have to!
- It's not TOO critical for the HW for many of the details about this math mostly background.
- We will use this FFT in the final weeks of lecture before projects, for implementing CONVOLUTIONAL NETWORKS on GPUs.

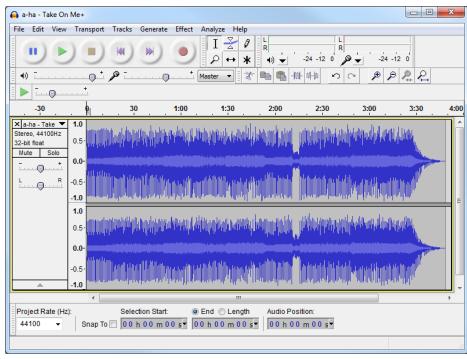
Signals (again)

Example Inspiral Gravitational Waves with Noise



Sodium current from Rat small DRG neuron





"Frequency content"

- FT answers question: "What frequencies are present in our signals?"
- Key to field of Digital Signal Processing -- see https://en.wikipedia.org/wiki/Digital signal processing
- Time domain higher frequencies are higher pitch
- Spatial domain works similarly, but with "x" instead of "t"

Eqns for Continuous Fourier Transform

- Fourier Transform (one of several formulations)
 - See https://en.wikipedia.org/wiki/Fourier transform

$$\hat{f}\left(\xi
ight) =\int_{-\infty}^{\infty}f(x)\;e^{-2\pi ix\xi}\;dx,$$
 (Eq.1)

- Starts with input continuous function f(x) where x is in the spatial domain or f(t) for time domain,
 - to output continuous function in frequency domain, ω for time frequency, or ξ for spatial frequency
- Integral is "similar" to a matrix multiply, where integrand has two variables like 2D matrix, and x is like row in matrix, and column in f(x), and the integral is like the sum.

Discrete Fourier Transform (DFT)

- Main DFT Formulation:
 - Converts Time Domain input, (little) x_n to
 - Frequency domain Output, (big) X_k

$$X_k \stackrel{\text{def}}{=} \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i k n/N}, \quad k \in \mathbb{Z}$$

- $-X_k$ values corresponding to wave k
 - Periodic calculate for $0 \le k \le N 1$
- Similar to continuous defn, where we can see the 2 D matrix in the exponential, times the column vector (little) x_n . where k is wave number.

Discrete Fourier Transform (DFT)

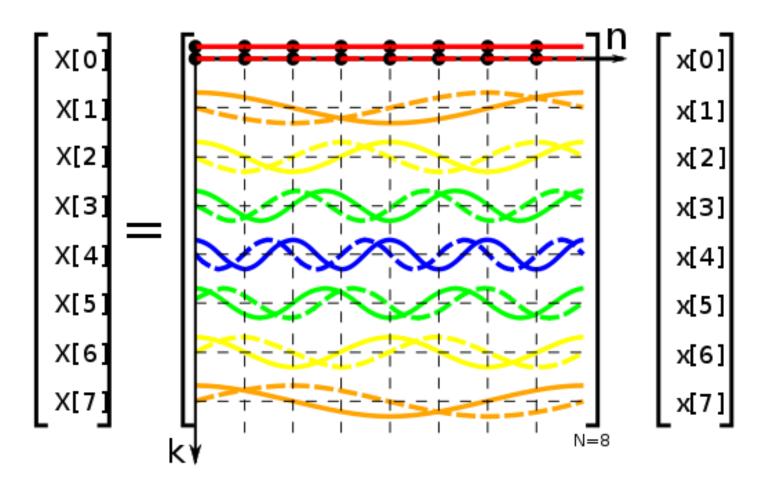
$$W = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix},$$

• Given signal $\vec{x} = (x_1, ..., x_N)$ over time, $\vec{y} = W\vec{x}$ represents DFT of \vec{x}

$$\omega = e^{-2\pi i/N}$$

- Each row of W is a complex sine wave
- Each row multiplied with \vec{x} inner product of wave with signal
- Corresponding entries of \vec{y} "content" of that sine wave!

Converting (little) x_n to (big) X_k



Solid line = real part
Dashed line = imaginary part

Discrete Fourier Transform (DFT)

Alternative formulation:

$$X_k \stackrel{\text{def}}{=} \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i k n/N}, \quad k \in \mathbb{Z}$$

- $-X_k$ values corresponding to wave k
 - Periodic calculate for $0 \le k \le N 1$

- Naive runtime: $O(N^2)$
 - Sum of N iterations, for N values of k

Discrete Fourier Transform (DFT)

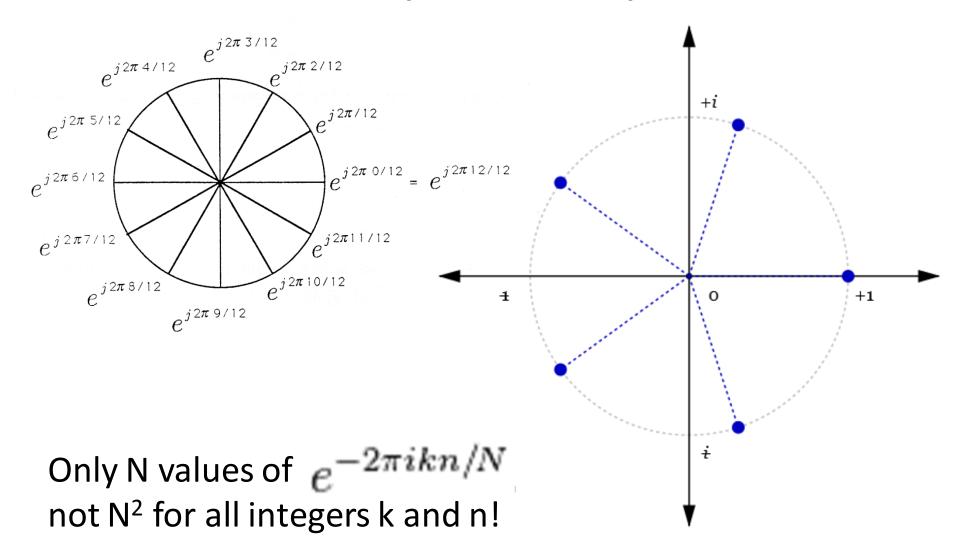
Alternative formulation:

$$X_k \stackrel{\text{def}}{=} \sum_{n=0}^{N-1} x_n \underbrace{e^{-2\pi i k n/N}}, \quad k \in \mathbb{Z}$$

- $-X_k$ values corresponding to wave k
 - Periodic calculate for $0 \le k \le N 1$

- Naive runtime: $O(N^2)$
 - Sum of N iterations, for N values of k

Roots of Unity on Complex Plane



Discrete Fourier Transform (DFT)

Alternative formulation:

$$X_k \stackrel{\text{def}}{=} \sum_{n=0}^{N-1} x_n \underbrace{\left(e^{-2\pi i k n/N}, \right)}_{A} k \in \mathbb{Z}$$

- $-X_k$ values corresponding to wave k
 - Periodic calculate for $0 \le k \le N 1$

Number of distinct values: N, not N²!

Re-expressing DFT, for Proof

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i kn/N} = \sum_{n=0}^{N-1} x_n e^{-2\pi i (\frac{k n}{N})}$$
$$= \sum_{n=0}^{N-1} x_n (e^{-2\pi i/N})^{k n}$$

$$X_k = \sum_{n=0}^{N-1} x_n (\omega_N)^{k n}$$
 where $\omega_N = e^{-2 \pi i/N}$

(Proof -- -- breaks DFT into two DFTs, even/odd)

- Breakdown (assuming N is power of 2):
 - (Let $\omega_N=e^{-2\pi i/N}$, smallest root of unity) $\sum_{n=0}^{N-1} x_n \omega_N^{kn}$

- Breakdown (assuming N is power of 2):
 - (Let $\omega_N=e^{-2\pi i/N}$, smallest root of unity)

$$\sum_{n=0}^{N-1} x_n \omega_N^{kn}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n+1)}$$

- Breakdown (assuming N is power of 2):
 - (Let $\omega_N=e^{-2\pi i/N}$, smallest root of unity)

$$\sum_{n=0}^{N-1} x_n \omega_N^{kn}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n+1)}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \omega_N \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n)}$$

- Breakdown (assuming N is power of 2):
 - (Let $\omega_N = e^{-2\pi i/N}$, smallest root of unity)

$$\sum_{n=0}^{N-1} x_n \omega_N^{kn}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n+1)}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \omega_N \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n)}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_{N/2}^{kn} + \omega_N \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_{N/2}^{kn}$$

- Breakdown (assuming N is power of 2):
 - (Let $\omega_N = e^{-2\pi i/N}$, smallest root of unity)

$$\sum_{n=0}^{N-1} x_n \omega_N^{kn}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n+1)}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_N^{k(2n)} + \omega_N \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_N^{k(2n)}$$

$$= \sum_{n=0}^{N/2-1} x_{(2n)} \omega_{N/2}^{kn} + \omega_N \sum_{n=0}^{N/2-1} x_{(2n+1)} \omega_{N/2}^{kn}$$

DFT of x_n , even n!

DFT of x_n, odd n!

(Divide-and-conquer algorithm)

```
Recursive-FFT(Vector x):
    if x is length 1:
          return x
    x_{even} \leftarrow (x_0, x_2, ..., x_{n-2})
    x_{odd} \leftarrow (x_1, x_3, ..., x_{n-1})
    y_even <- Recursive-FFT(x_even)</pre>
    y_odd <- Recursive-FFT(x_odd)</pre>
    for k = 0, ..., (n/2)-1:
         y[k] <- y_{even}[k] + w^k * y_{odd}[k]
         y[k + n/2] <- y_even[k] - w^k * y_odd[k]
    return y
```

(Divide-and-conquer algorithm)

```
Recursive-FFT(Vector x):
    if x is length 1:
          return x
    x_{even} \leftarrow (x_0, x_2, ..., x_{n-2})
    x_{odd} \leftarrow (x_1, x_3, ..., x_{n-1})
                                                          T(n/2)
    y_even <- Recursive-FFT(x_even)</pre>
                                                          T(n/2)
    y_odd <- Recursive-FFT(x_odd) <</pre>
                                                          O(n)
    for k = 0, ..., (n/2)-1:
         y[k] <- y_even[k] + w^k * y_odd[k]
         y[k + n/2] <- y_even[k] - w^k * y_odd[k]
    return y
```

Runtime

Recurrence relation:

$$-T(n) = 2T(n/2) + O(n)$$

O(n log n) runtime! Much better than O(n²)

- (Minor caveat: N must be power of 2)
 - Usually resolvable

Parallelizable?

O(n²) algorithm certainly is!

```
for k = 0,...,N-1: for n = 0,...,N-1:  X_k \stackrel{\mathrm{def}}{=} \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i k n/N}
```

- Sometimes parallelization of "bad" algorithm can outweigh runtime for "better" algorithm!
 - (N-body problem, ...)

Culey Tukey Recursive Algorithm for FFT

- See https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey FFT algorithm
- Recursively re-expresses discrete Fourier transform (DFT) of an arb composite size

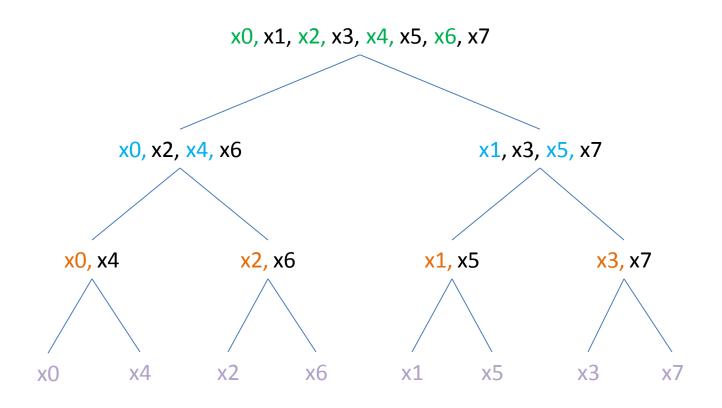
$$N = N_1 N_2$$

in terms of in terms of N1 smaller DFTs of sizes N2, recursively

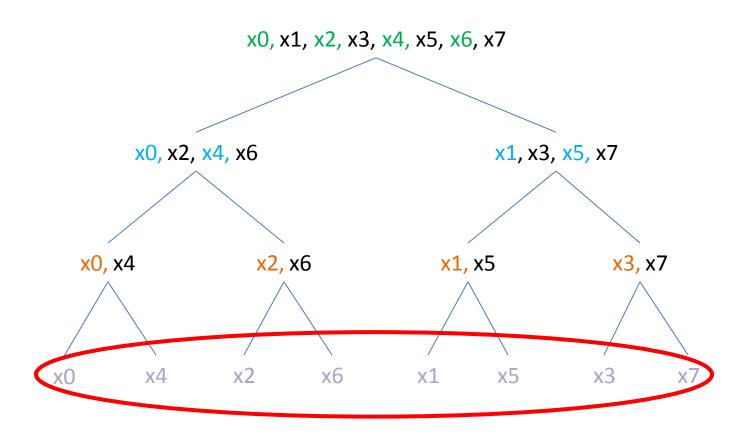
Reduces computation time to O(N log N) for highly composite N (smooth numbers).

Specific variants and implementation styles have become known by their own names

Recursive index tree



Recursive index tree



Bit-reversal order

```
0 000
```

- 4 100
- 2 010
- 6 110
- 1 001
- 5 101
- 3 011
- 7 111

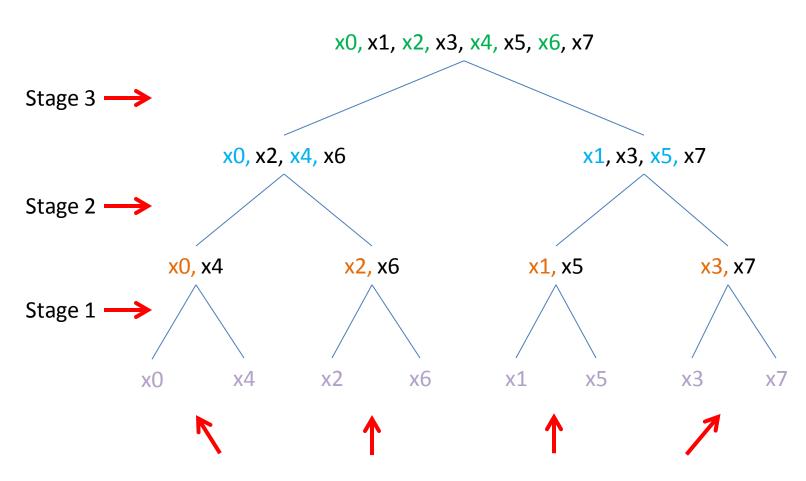
Bit-reversal order

0	000	reverse of	000	0
4	100		001	1
2	010		010	2
6	110		011	3
1	001		100	4
5	101		101	5
3	011		110	6
7	111		111	7

(Divide-and-conquer algorithm review)

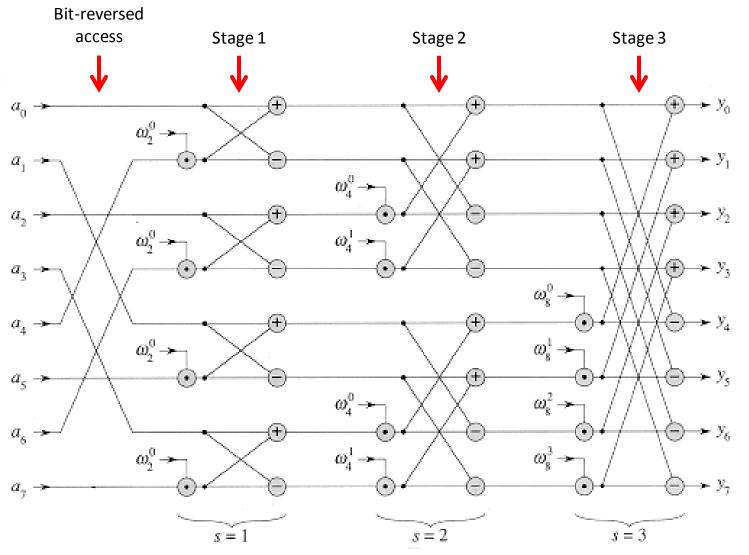
```
Recursive-FFT(Vector x):
    if x is length 1:
          return x
    x_{even} \leftarrow (x_0, x_2, ..., x_{n-2})
    x_{odd} \leftarrow (x_1, x_3, ..., x_{n-1})
                                                          T(n/2)
    y_even <- Recursive-FFT(x_even)</pre>
                                                          T(n/2)
    y_odd <- Recursive-FFT(x_odd) <</pre>
                                                          O(n)
    for k = 0, ..., (n/2)-1:
         y[k] <- y_even[k] + w^k * y_odd[k]
         y[k + n/2] <- y_even[k] - w^k * y_odd[k]
    return y
```

Iterative approach

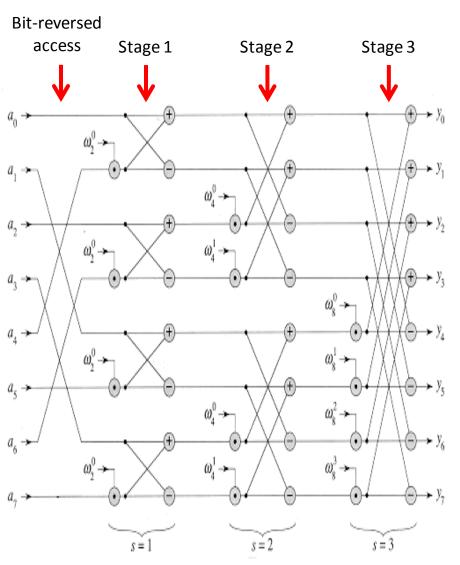


Bit-reversed accesses (a la sum reduction)

Iterative approach

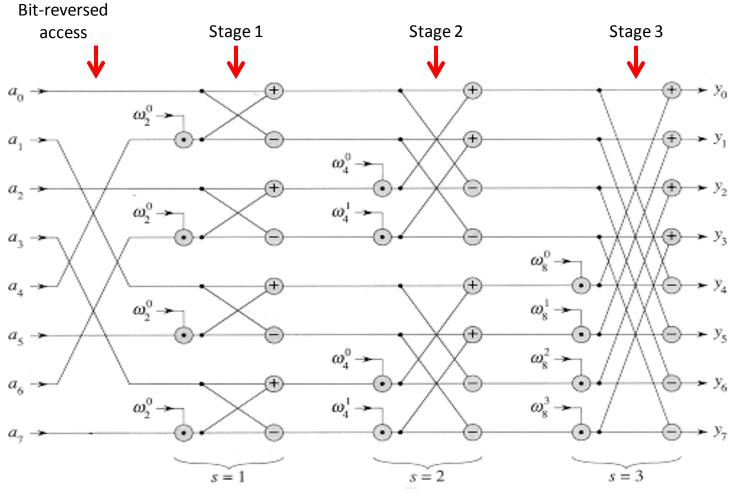


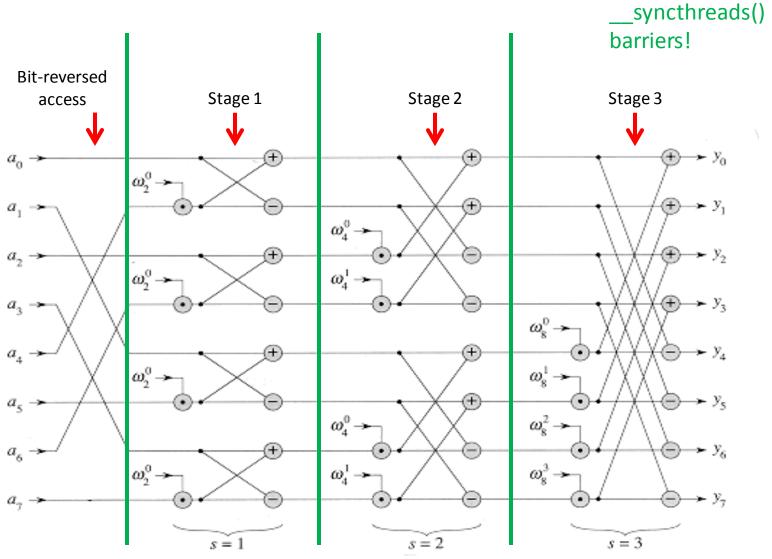
Iterative approach

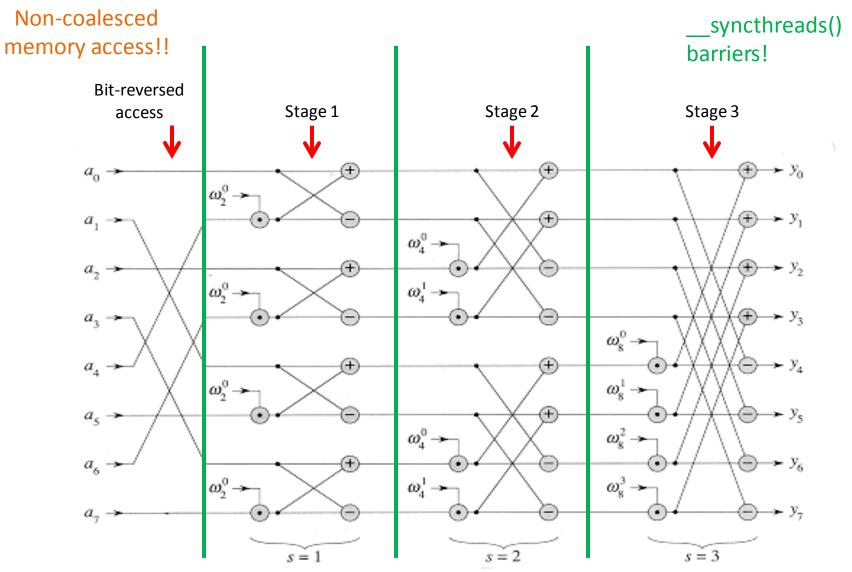


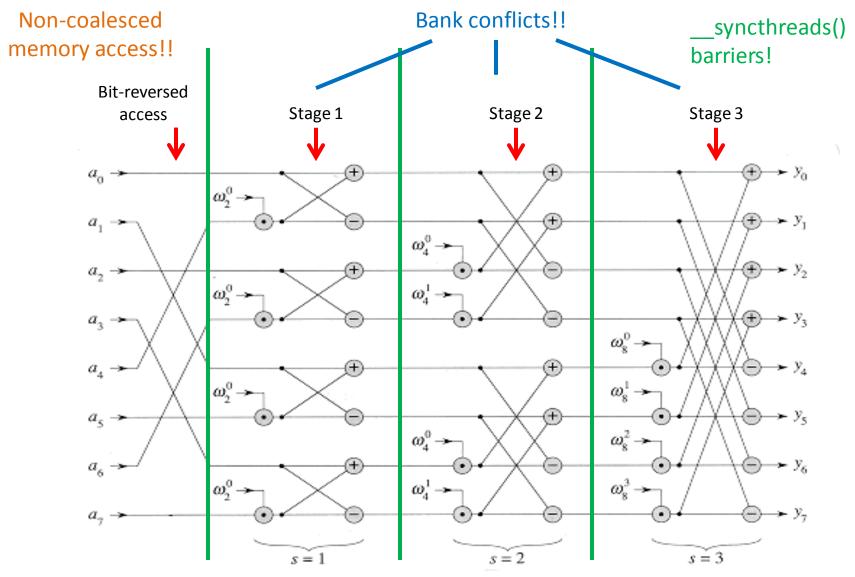
Iterative-FFT(Vector x): y <- (bit-reversed order x) N <- y.length for $s = 1, 2, ..., \lg(N)$: $m < -2^s$ $w_n < - e^{2\pi j/m}$ for k: $0 \le k \le N-1$, stride m: for i = 0, ..., (m/2)-1: $u \leftarrow y[k + j]$ $t < -(w_n)^j * y[k + j + m/2]$ $y[k + j] \leftarrow u + t$ v[k + i + m/2] < -u - t

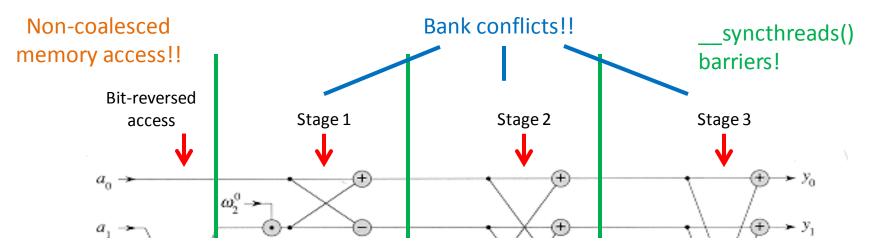
return y



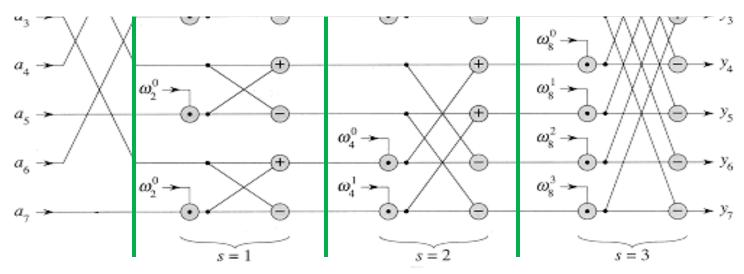








THIS IS WHY WE HAVE LIBRARIES



cuFFT

- FFT library included with CUDA
 - Approximately implements previous algorithms
 - (Cooley-Tukey/Bluestein)
 - Also handles higher dimensions
 - Handles nasty hardware constraints that you don't want to think about
- Also handles inverse FFT/DFT similarly
 - Just a sign change in complex terms

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{i2\pi kn/N}, \quad n \in \mathbb{Z}$$

cuFFT 1D example

```
#define NX 262144
cufftComplex *data host
        = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
cufftComplex *data back
        = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
// Get data...
cufftHandle plan;
cufftComplex *data1;
cudaMalloc((void**)&data1, sizeof(cufftComplex)*NX);
cudaMemcpy(data1, data host, NX*sizeof(cufftComplex), cudaMemcpyHostToDevice);
/* Create a 1D FFT plan. */
int batch = 1; // Number of transforms to run
cufftPlan1d(&plan, NX, CUFFT C2C, batch);
/* Transform the first signal in place. */
                                                                             Correction:
cufftExecC2C(plan, data1, data1, CUFFT FORWARD);
                                                                             Remember to use
                                                                             cufftDestroy(plan)
                                                                             when finished with
/* Inverse transform in place. */
                                                                             transforms
cufftExecC2C(plan, data1, data1, CUFFT INVERSE);
cudaMemcpy(data_back, data1, NX*sizeof(cufftComplex), cudaMemcpyDeviceToHost);
```

cuFFT 3D example

```
#define NX 64
#define NY 64
#define NZ 128
cufftComplex *data host
        = (cufftComplex*)malloc(sizeof(cufftComplex)*NX*NY*NZ);
cufftComplex *data back
        = (cufftComplex*)malloc(sizeof(cufftComplex)*NX*NY*NZ);
// Get data...
cufftHandle plan;
cufftComplex *data1;
cudaMalloc((void**)&data1, sizeof(cufftComplex)*NX*NY*NZ);
cudaMemcpy(data1, data host, NX*NY*NZ*sizeof(cufftComplex), cudaMemcpyHostToDevice);
/* Create a 3D FFT plan. */
cufftPlan3d(&plan, NX, NY, NZ, CUFFT C2C);
/* Transform the first signal in place. */
                                                                               Correction:
cufftExecC2C(plan, data1, data1, CUFFT FORWARD);
                                                                               Remember to use
                                                                               cufftDestroy(plan)
                                                                               when finished with
/* Inverse transform in place. */
                                                                               transforms
cufftExecC2C(plan, data1, data1, CUFFT INVERSE);
cudaMemcpy(data back, data1, NX*NY*NZ*sizeof(cufftComplex), cudaMemcpyDeviceToHost);
```

Remarks

- As before, some parallelizable algorithms don't easily "fit the mold"
 - Hardware matters more!

- Some resources:
 - Introduction to Algorithms (Cormen, et al), aka
 "CLRS", esp. Sec 30.5
 - "An Efficient Implementation of Double Precision
 1-D FFT for GPUs Using CUDA" (Liu, et al.)