
CS 179: GPU Programming 

Lecture 8 



Last time 

• GPU-accelerated: 

– Reduction 

– Prefix sum 

– Stream compaction 

– Sorting (quicksort) 

 

 



Today 

• GPU-accelerated Fast Fourier Transform 
• cuFFT (FFT library) 
• This lecture – details behind FFT algorithm. 

Shows why you shouldn’t re-invent the wheel! 
– Don’t implement what a library already does for you, 

if you don’t have to! 

• It’s not TOO critical for the HW for many of the 
details about this math – mostly background.  

• We will use this FFT in the final weeks of lecture 
before projects, for implementing  
CONVOLUTIONAL NETWORKS on GPUs.  



Signals (again) 



“Frequency content” 

• FT answers question: “What frequencies are 
present in our signals?” 

• Key to field of Digital Signal Processing  -- see 
https://en.wikipedia.org/wiki/Digital_signal_processing 

• Time domain – higher frequencies are higher 
pitch 

• Spatial domain – works similarly, but with “x” 
instead of “t” 

 

 

 

https://en.wikipedia.org/wiki/Digital_signal_processing


Eqns for Continuous Fourier Transform 

• Fourier Transform (one of several formulations) 
– See https://en.wikipedia.org/wiki/Fourier_transform 

•   
  
• Starts with input continuous function f(x) where 

x is in the spatial domain or f(t) for time domain, 
–  to output continuous function in frequency domain, 
w for time frequency, or x  for spatial frequency 

• Integral is “similar” to a matrix multiply, where 
integrand has two variables like 2D matrix, and x 
is like row in matrix, and column in f(x), and the 
integral is like the sum.  
 

https://en.wikipedia.org/wiki/Fourier_transform


Discrete Fourier Transform (DFT) 

• Main DFT Formulation: 
– Converts Time Domain input, (little) xn to  
– Frequency domain Output, (big) Xk 

 
 
 

  
• Similar to continuous defn, where we can see the 

2 D matrix in the exponential, times the column 
vector (little) xn . where  k is wave number.  
 
 
 



Discrete Fourier Transform (DFT) 



Solid line = real part 
Dashed line = imaginary part 

Converting (little) xn to (big) Xk   



Discrete Fourier Transform (DFT) 



Discrete Fourier Transform (DFT) 



Roots of Unity on Complex Plane 

Only N values of                            
not N2 for all integers k and n! 



Discrete Fourier Transform (DFT) 

Number of distinct values: N, not N2! 



Re-expressing DFT, for Proof 

where 



(Proof -- -- breaks DFT into two DFTs, even/odd) 



(Proof of Recursion) 



(Proof of Recursion) 



(Proof of Recursion) 



(Proof of Recursion) 

DFT of xn, even n! DFT of xn, odd n! 



(Divide-and-conquer algorithm) 

Recursive-FFT(Vector x): 

 

 if x is length 1: 

      return x 

 

 x_even <- (x0, x2, ..., x_(n-2) ) 

 x_odd <- (x1, x3, ..., x_(n-1) ) 

  

 y_even <- Recursive-FFT(x_even) 

 y_odd <- Recursive-FFT(x_odd) 

  

 for k = 0, …, (n/2)-1: 

     y[k]  <- y_even[k] + wk * y_odd[k] 

     y[k + n/2]  <- y_even[k] - wk * y_odd[k] 

 

 return y 

 

 



(Divide-and-conquer algorithm) 

Recursive-FFT(Vector x): 

 

 if x is length 1: 

      return x 

 

 x_even <- (x0, x2, ..., x_(n-2) ) 

 x_odd <- (x1, x3, ..., x_(n-1) ) 

  

 y_even <- Recursive-FFT(x_even) 

 y_odd <- Recursive-FFT(x_odd) 

  

 for k = 0, …, (n/2)-1: 

     y[k]  <- y_even[k] + wk * y_odd[k] 

     y[k + n/2]  <- y_even[k] - wk * y_odd[k] 

 

 return y 

 

 

T(n/2) 

T(n/2) 

O(n) 



Runtime 

• Recurrence relation: 

– T(n) = 2T(n/2) + O(n) 

 

O(n log n) runtime! Much better than O(n2) 

 
• (Minor caveat: N must be power of 2) 

– Usually resolvable 



Parallelizable? 

• O(n2) algorithm certainly is! 
for k = 0,…,N-1: 

 for n = 0,…,N-1: 

     ... 

 

• Sometimes parallelization of “bad” algorithm 
can outweigh runtime for “better” algorithm! 

– (N-body problem, …) 

 

 

 



Culey Tukey Recursive Algorithm for FFT 

• See https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm 

•  Recursively re-expresses discrete Fourier 
transform (DFT) of an arb composite size  
N = N1  N2   

in terms of in terms of N1 smaller DFTs of sizes N2, 
recursively 

Reduces  computation time to O(N log N) for highly 
composite N (smooth numbers).  

Specific variants and implementation styles have 
become known by their own names 

 
  

 

https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm


Recursive index tree 

x0, x1, x2, x3, x4, x5, x6, x7 

x0, x2, x4, x6 x1, x3, x5, x7 

x0, x4 x2, x6 x1, x5 x3, x7 

x0 x4 x2 x6 x1 x5 x3 x7 



Recursive index tree 

x0, x1, x2, x3, x4, x5, x6, x7 

x0, x2, x4, x6 x1, x3, x5, x7 

x0, x4 x2, x6 x1, x5 x3, x7 

x0 x4 x2 x6 x1 x5 x3 x7 

Order? 



Bit-reversal order 

0 000 
4 100 
2 010 
6 110 
1 001 
5 101 
3 011 
7 111 



Bit-reversal order 

0 000    reverse of… 000 0 
4 100    001 1 
2 010    010 2 
6 110    011 3 
1 001    100 4 
5 101    101 5 
3 011    110 6 
7 111    111 7 



(Divide-and-conquer algorithm review) 

Recursive-FFT(Vector x): 

 

 if x is length 1: 

      return x 

 

 x_even <- (x0, x2, ..., x_(n-2) ) 

 x_odd <- (x1, x3, ..., x_(n-1) ) 

  

 y_even <- Recursive-FFT(x_even) 

 y_odd <- Recursive-FFT(x_odd) 

  

 for k = 0, …, (n/2)-1: 

     y[k]  <- y_even[k] + wk * y_odd[k] 

     y[k + n/2]  <- y_even[k] - wk * y_odd[k] 

 

 return y 

 

 

T(n/2) 

T(n/2) 

O(n) 



Iterative approach 

x0, x1, x2, x3, x4, x5, x6, x7 

x0, x2, x4, x6 x1, x3, x5, x7 

x0, x4 x2, x6 x1, x5 x3, x7 

x0 x4 x2 x6 x1 x5 x3 x7 

Stage 3 

Stage 2 

Stage 1 

Bit-reversed accesses (a la sum reduction) 



Iterative approach 
Bit-reversed 

access 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 



Iterative approach 
Iterative-FFT(Vector x): 

 

 y <- (bit-reversed order x) 

 N <- y.length 

 for s = 1,2,…,lg(N): 

 

     m <- 2s 

     wn <- e
2πj/m 

 

     for k: 0 ≤ k ≤ N-1, stride m: 

         for j = 0,…,(m/2)-1: 

 

             u <- y[k + j] 

             t <- (wn)
j * y[k + j + m/2] 

 

             y[k + j] <- u + t 

             y[k + j + m/2] <- u - t 

 

  

 return y 

 

 

 

 

Bit-reversed 
access 

http://staff.ustc.edu.cn/~csli/graduate/algo
rithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 



CUDA approach 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 
Bit-reversed 

access 



CUDA approach 

Bit-reversed 
access 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 

__syncthreads() 
barriers! 



CUDA approach 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 

__syncthreads() 
barriers! 

Non-coalesced 
memory access!! 

Bit-reversed 
access 



CUDA approach 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 

__syncthreads() 
barriers! 

Non-coalesced 
memory access!! 

Bank conflicts!! 

Bit-reversed 
access 



CUDA approach 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm 

Stage 1 Stage 2 Stage 3 

__syncthreads() 
barriers! 

Non-coalesced 
memory access!! 

Bank conflicts!! 

Bit-reversed 
access 

THIS IS WHY WE HAVE LIBRARIES 



cuFFT 

• FFT library included with CUDA 

– Approximately implements previous algorithms 

• (Cooley-Tukey/Bluestein) 

• Also handles higher dimensions 

– Handles nasty hardware constraints that you don’t 
want to think about 

• Also handles inverse FFT/DFT similarly 

– Just a sign change in complex terms 



cuFFT 1D example 

 

Correction: 
Remember to use 
cufftDestroy(plan) 
when finished with 
transforms 



cuFFT 3D example 

 

Correction: 
Remember to use 
cufftDestroy(plan) 
when finished with 
transforms 



Remarks 

• As before, some parallelizable algorithms 
don’t easily “fit the mold” 

– Hardware matters more! 

 

• Some resources: 

– Introduction to Algorithms (Cormen, et al), aka 
“CLRS”, esp. Sec 30.5 

– “An Efficient Implementation of Double Precision 
1-D FFT for GPUs Using CUDA” (Liu, et al.) 

 


