
CS 179: GPU
Programming
LECT URE 5: SYNCHRONIZATION AND ILP

1

Announcement

 Reminder: Instead of emailing us the solution as some assignments may still ask for, please put a zip
file in your home directory on Titan, in the format:

 lab[N]_2021_submission.zip

Your submission should be a single archive file (.zip) with your README file and all code.

2

Last time...

o GPU Memory System
o Global Memory: the slowest and largest form of memory on the GPU, shared by all grids
o Coalesced memory access minimizes the number of cache lines read

o Shared Memory: very fast memory, located on the SM and shared by the block

o Setup as 32 banks that can be accessed in parallel. Each successive 32-bit words are
assigned to successive banks

o A bank conflict occurs when 2 threads in a warp access different elements in the same
bank

o Registers: fasted memory possible, located on the SM, scope is the thread

o Local Memory: located on the Global Memory, scope is the thread

o L1/L2/L3 Cache

o Texture and Constant Cache

3

This time:

◦ Synchronization and Deadlock

◦ -- Digression on Floating Point calculations

◦ -- Digression on seeing Compiler optimizations (https://godbolt.org/)

◦ Atomic Operations

◦ Instruction Dependencies

◦ Instruction Level Parallelism (ILP)

◦ Warp Scheduler

◦ Occupancy

4

https://godbolt.org/
https://godbolt.org/

Synchronization

Ideal case for parallelism:
● no resources shared between threads
● no communication needed between threads

However, many algorithms that require shared resources can still be accelerated by massive
parallelism of the GPU.

•Need to avoid Deadlock! Processes can depend on each other and get stuck!
•Each member of a group can wait for another member, including itself, to take action.

•https://en.wikipedia.org/wiki/Deadlock

5

https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Deadlock

Synchronization

 Synchronization is a process by which multiple threads must indirectly communicate with
each other in order to make sure they do not clash with each other

 Example of synchronization issue:

int x = 1;
Thread 1: x += 1;
Thread 2: x += 1;

◦ Thread 1 reads in the value of x (which is 1) into a register
◦ Thread 2 reads in the value of x (which is still 1) into a register
◦ Both threads increment the values they read in but they both think the final value is 2
◦ They write x back out and the final result is 2

6

Synchronization

 Examples needing synchronization:

◦ Parallel BFS (Breadth First Search)
◦ see https://en.wikipedia.org/wiki/Parallel_breadth-first_search

◦ (assuming thread touches elements in shared memory that were
loaded by other threads. Can’t start processing until all threads
have finished loading data into shared memory.)

◦ Accurately summing a list of floating point numbers in
parallel Many issues! See
http://ic.ese.upenn.edu/pdf/parallel_fpaccum_tc2016.pdf

◦ Loading parallel data into a GPU’s shared memory
◦ Dining philosophers problem –

◦ https://en.wikipedia.org/wiki/Dining_philosophers_problem

7

https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
http://ic.ese.upenn.edu/pdf/parallel_fpaccum_tc2016.pdf
http://ic.ese.upenn.edu/pdf/parallel_fpaccum_tc2016.pdf
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem

Digression: Accuracy Issues for Floating Point Calculations

 Finite precision arithmetic! (Use double precision for numerical accuracy. Slower.)

 Addition is NOT associative, so

For instance, there is a small enough positive number, e such that 1 + e = 1 .

Consider (e + 1) – 1 which is equal to (1) – 1 which is zero.
Re-associate, and compare to e + (1 – 1) which is e + (0) which is e .
The two different results are very different! Not enough bits to retain full accuracy!

Don’t add large list of finite precision numbers in uncontrolled order. May as well be
a random number generator! Add from smallest to largest, to preserve “bits.”

Earliest C compilers assumed addition was associative, and ruined the calculations.
Couldn’t easily be used for numeric calculations!

8

How bad can floating point get?

9

Digression on code from compilers …

 See https://godbolt.org/ for useful site to see result from different compilers
 Sample source code is on the left
 Resulting compiled code is on the right, where you can choose which compiler you’re going to
examine.

10

https://godbolt.org/
https://godbolt.org/
https://godbolt.org/

Synchronization

 On a CPU, you can solve synchronization issues using Locks, Semaphores, Condition Variables,
etc.
•Locks -- https://en.wikipedia.org/wiki/Computer_lock
•Semaphores -- https://en.wikipedia.org/wiki/Semaphore_(programming)
•Condition Variables --
https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables_2

 On a GPU, these solutions can frequently introduce too much memory and process overhead

◦ Simpler solutions available, many times better suited for parallel programs

11

https://en.wikipedia.org/wiki/Computer_lock
https://en.wikipedia.org/wiki/Computer_lock
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Monitor_(synchronization)

CUDA Synchronization

 Usually use the __syncthreads() function to sync threads within a block
◦ Only works at the block level

◦ SMs are separate from each other so can't do “better” than this
◦ Similar to barrier() function in C/C++

https://en.wikipedia.org/wiki/Barrier_(computer_science)

◦ This __synchthreads() call is very useful for kernels using shared memory.

12

https://en.wikipedia.org/wiki/Barrier_(computer_science)
https://en.wikipedia.org/wiki/Barrier_(computer_science)

Atomic Operations

 Atomic Operations are operations that ONLY happen in sequence, independent of other processes
◦ For example, if you want to add up N numbers by adding the numbers to a variable that starts in

0, you must add one number at a time

◦ Don't do this though. We'll talk about better ways to do this in the next lecture. Only use when
you have no other options

“Atomic operations” in concurrent programming are program operations that run completely
independently of any other processes.

See https://www.techopedia.com/definition/3466/atomic-operation

13

https://www.techopedia.com/definition/3466/atomic-operation
https://www.techopedia.com/definition/3466/atomic-operation
https://www.techopedia.com/definition/3466/atomic-operation
https://www.techopedia.com/definition/3466/atomic-operation

Atomic Operations

 CUDA provides built in atomic operations
◦ Use the functions: atomic<op>(float *address, float val);

◦ Replace <op> with one of: Add, Sub, Exch, Min, Max, Inc, Dec, And, Or, Xor
◦ e.g. atomicAdd(float *address, float val) for atomic addition

◦ These functions are all implemented using a function called atomicCAS(int
*address, int compare, int val)
◦ CAS stands for compare and swap. The function compares *address to compare

and swaps the value to val if the values are different
◦ Double precision more accurate, but can be much slower!

14

Instruction Dependencies

acc += x[0];

acc += x[1];

acc += x[2];

acc += x[3];
...

15

 An Instruction Dependency is a requirement relationship
between instructions that force a sequential execution
◦ In the example on the right, each summation call must

happen in sequence because the value of acc depends
on the previous summation as well

 Can be caused by direct dependencies or requirements set
by the execution order of code
◦ I.e. You can't start an instruction until all previous

operations have been completed in a single thread

Instruction Level Parallelism (ILP)
 Instruction Level Parallelism is when you avoid performances losses caused by
instruction dependencies

◦ Idea: we do not have to wait until instruction n has finished to start
instruction n + 1

◦ In CUDA, also removes performances losses caused by how certain operations
are handled by the hardware

16

ILP Example

z0 = x[0] + y[0];

z1 = x[1] + y[1];

x0 = x[0];

y0 = y[0];

z0 = x0 + y0;

x1 = x[1];

y1 = y[1];

z1 = x1 + y1;

17

COMPILATION

• The second half of the code can't start execution until the first half completes

ILP Example

z0 = x[0] + y[0];

z1 = x[1] + y[1];

x0 = x[0];

y0 = y[0];

x1 = x[1];

y1 = y[1];

z0 = x0 + y0;

z1 = x1 + y1;

18

COMPILATION

• Sequential nature of the code due to instruction dependency has been minimized.

• Additionally, this code minimizes the number of memory transactions required

Warp Schedulers

 Warp schedulers find a warp that is ready to execute its next instruction and available execution
cores and then start execution

 GPU has at least one warp scheduler per SM. Each scheduler has 2 dispatchers.
 The scheduler picks an eligible warp and executes all threads in the warp .
 If any of the threads in the executing warp stalls (uncachedmemory read) the scheduler makes it
inactive. If there are no eligible warps left then GPU idles

Context switch between warps is fast–About 1 or 2 cycles (1 nano-second on 1 GHz GPU)–The
whole thread block has resources allocated on an SM by thecompiler ahead of time

◦ GK110:

◦ 4 warp schedulers in each SM and 2 dispatchers in each scheduler

◦ Can start instructions in up to 4 warps each clock and up to 2 subsequent, independent
instructions in each warp. Up to 80 warp instructions to hide latency of warp add (10 cycles)

19

Occupancy

Idea: Need enough independent threads per SM to hide latencies
o Instruction latencies

o Memory access latencies

Occupancy: number of concurrent threads per SM
o Occupancy = active warps per SM / max warps per SM

Number of threads that fit per SM (max warps per SM) is determined by the hardware
resources of the GPU.
Threads/block matters because (combined with the number of blocks) let’s us know how
many warps there are on the SM.

 20

Occupancy

The number of active warps per SM is determined by the limiting resources
o Registers per thread

o SM registers are partitioned among the threads

o Shared memory per thread block

o SM shared memory is partitioned among the blocks

o Threads per thread block

o Threads are allocated at thread block granularity

Needed occupancy depends on the code
o More independent work per thread -> less occupancy is needed

o Memory-bound codes tend to need more occupancy Higher latency than for arithmetic, need more work
to hide it

Don’t need for 100% occupancy for maximum performance

21

GK110 (Kepler) numbers

● max threads / SM = 2048 (64 warps)
● max threads / block = 1024 (32 warps)
● 32 bit registers / SM = 64k
● max shared memory / SM = 48KB

The number of blocks that run concurrently on a SM depends on the resource requirements of the
block!

22

GK110 Occupancy

100% occupancy

● 2 blocks of 1024 threads
● 32 registers/thread
● 24KB of shared memory / block

50% occupancy

● 1 block of 1024 threads
● 64 registers/thread
● 48KB of shared memory / block

23

Review of Terms …

◦ Synchronization

◦ Atomic Operations

◦ Instruction Dependencies

◦ Instruction Level Parallelism (ILP)

◦ Warp Scheduler

◦ Occupancy

24

Other Resources

 ILP
 https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf

 Warps and Occupancy
 http://on-demand.gputechconf.com/gtc-
express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf

25

https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf

Next time...

 Set 2 Recitation on Friday (04/12)
 GPU based algorithms (next week)

26

