
CS 179: GPU
Computing
LECTURE 2: INTRO TO THE SIMD LIFESTYLE AND
GPU INTERNALS

Recap
 Can use GPU to solve highly parallelizable problems

 Looked at the a[] + b[] -> c[] example

 CUDA is a straightforward extension to C++

◦ Separate CUDA code into .cu and .cuh files

◦ We compile with nvcc, NVIDIA’s compiler for CUDA, to create object
files (.o files)

 Search for “Resource” links on
http://courses.cms.caltech.edu/cs179/

http://courses.cms.caltech.edu/cs179/

A Few GPU Keywords to Remember …
• CUDA – Nvidia’s C++ like language for programming GPUs

•nvcc – nVidia CUDA compiler

•SM -- Streaming Multiprocessor
• https://en.wikipedia.org/wiki/Stream_processing

•SIMD computation – Single instruction, multiple data (SIMD) is a class
of parallel computers in Flynn's taxonomy.
• https://en.wikipedia.org/wiki/SIMD

•SIMT computation – Single instruction, multiple threads
• https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads

https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Flynn's_taxonomy
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads

More GPU Keywords …
•Threads – A thread of execution is the smallest sequence of programmed
instructions that can be managed independently by a scheduler, which is typically a
part of the operating system
• https://en.wikipedia.org/wiki/Thread_(computing)

•Blocks – A thread block is a programming abstraction that represents a group of
threads that can be executed serially or in parallel.
• https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)

•Grids – Nvidia GRID is a family of graphics processing units (GPUs)
• https://en.wikipedia.org/wiki/Nvidia_GRID

•Warps -- On the hardware side, a thread block is composed of ‘warps’. A warp is a
set of 32 threads within a thread block such that all the threads in a warp execute
the same instruction. These threads are selected serially by the SM
• https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)#Warps

•Warp Divergence – All threads must generally execute the same code (if-then-else).
• https://cvw.cac.cornell.edu/gpu/thread_div

https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Nvidia_GRID
https://cvw.cac.cornell.edu/gpu/thread_div

NVCC and G++
 CUDA is simply an extension of other bits of code you write!!!!

◦ Evident in .cu/.cuh vs .cpp/.hpp distinction

◦ .cu/.cuh is compiled by nvcc to produce a .o file

◦ Since CUDA 7.0 / 9.0 there’s support by NVCC for most C++11 / C++14
language features, but make sure to read restrictions for device code

◦ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-
cplusplus-language-support

◦ .cpp/.hpp is compiled by g++ and the .o file from the CUDA code is
simply linked in using a "#include xxx.cuh" call

◦ No different from how you link in .o files from normal C++ code

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

.cu/.cuh vs .cpp/.hpp

.cu/.cuh vs .cpp/.hpp

.cu/.cuh vs .cpp/.hpp

.cu/.cuh vs .cpp/.hpp

Thread Block Organization

◦ Keywords you MUST know to code in
CUDA:

◦ Thread - Distributed by the CUDA
runtime (threadIdx)

◦ Block - A user defined group of 1 to
~512 threads (blockIdx)

◦ Grid - A group of one or more blocks.
A grid is created for each CUDA kernel
function called.

◦ Imagine thread organization as
an array of thread indices

Block and Grid Dimensions

◦ For many parallelizeable problems involving arrays, it’s
useful to think of multidimensional arrays.
◦ E.g. linear algebra, physical modelling, etc, where we want to assign

unique thread indices over a multidimensional object

◦ So, CUDA provides built in multidimensional thread indexing capabilities
with a struct called dim3!

Dim3
dim3 is a struct (defined in vector_types.h) to define your Grid and Block
dimensions.

Works for dimensions 1, 2, and 3:
• dim3 grid(256); // defines a grid of 256 x 1 x 1 blocks
• dim3 block(512, 512); // defines a block of 512 x 512 x 1 threads
• foo<<<grid, block>>>(...);

Grid/Block/Thread Visualized

Single Instruction, Multiple Data (SIMD)
◦ SIMD describes a class of instructions which perform the same operation on multiple

registers simultaneously.

◦ Example: Add some scalar to 3 registers, storing the output for each addition in those
registers.

◦ Used to increase the brightness of a pixel

◦ CPUs also have SIMD instructions and are very important for applications that need to do
a lot of number crunching

◦ Video codecs like x264/x265 make extensive use of SIMD instructions to speed up video
encoding and decoding.

SIMD continued
◦ Converting an algorithm to use SIMD is usually called “Vectorizing”

◦ Not every algorithm can benefit from this or even be vectorized at all, e.x.
Parsing.

◦ Using SIMD instructions is not always beneficial though.

◦ Even using the SIMD hardware requires additional power, and thus waste
heat.

◦ If the gains are small it probably isn’t worth the additional complexity.

◦ Optimizing compilers like GCC and LLVM are still being trained to be able to
vectorize code usefully, though there has been many exciting developments
on this front in the last 2 years and is an active area of study.

◦ https://polly.llvm.org/

https://polly.llvm.org/

SIMT (Single Instruction,
Multiple Thread) Architecture

 A looser extension of SIMD which is what CUDA’s computational model
uses
◦ Key differences:

◦ Single instruction, multiple register sets
◦ Wastes some registers, but mostly necessary for following two points

◦ Single instruction, multiple addresses (i.e. parallel memory access!)
◦ Memory access conflicts! Will discuss next week.

◦ Single instruction, multiple flow paths (i.e. if statements are allowed!!!)
◦ Introduces slowdowns, called ‘warp-divergence.’

 Good description of differences
◦ https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

◦ https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#hardware-implementation

https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Thread blocks and Warps – Questions?

Copyright Games Workshop inc.

Important CUDA Hardware
Keywords!

◦ Streaming Multiprocessor (SM) – Each contains (usually) 128 single precision CUDA cores (which
execute a thread) and their associated cache.

◦ This is a standard based on your machines Compute Capability.

◦ Warp – A unit of up to 32 threads (all within the same block)

◦ Each SM creates and manages multiple warps via the block abstraction. Assigns to each warp a
Warp Scheduler to schedule the execution of instructions in each warp.

◦ Warp Divergence – A condition where threads within a warp need to execute different
instructions in order to continue executing their kernel.

◦ In order to maintain multiple flow path per instruction, threads in different ‘execution
branches’ during an instruction are given no-ops.

◦ Causes threads to execute sequentially, in most cases ruining parallel performance.

◦ As of the Kepler (2012) architecture each Warp can have at most 2 branches, starting with
Volta (2017) this condition has been nearly eliminated. For this class assume your code must
only branch at most twice as we are not yet allocating Volta GPUs to this class.

◦ Inpendent Thread Scheduling fixes this problem by maintianing an execution state per
thread. See Compute Capability 7.x

What a modern GPU looks like

Inside a GPU

The black Xs are just
crossing out things you

don’t have to think about
just yet. We’ll cover
memory next week

Inside a GPU
 Think of Device Memory (we will also
refer to it as Global Memory) as a
RAM for your GPU
◦ Faster than getting memory from the

actual RAM but still have other options
◦ Will come back to this in future lectures

 GPUs have many Streaming
Multiprocessors (SMs)
◦ Each SM has multiple processors but

only one instruction unit (each thread
shares program counter)

◦ Groups of processors must run the
exact same set of instructions at any
given time with in a single SM

Inside a GPU

 When a kernel (the thing you define in
.cu files) is called, the task is divided up
into threads

◦ Each thread handles a small portion of
the given task

 The threads are divided into a Grid of
Blocks

◦ Both Grids and Blocks are 3 dimensional

◦ e.g.

dim3 dimBlock(8, 8, 8);

dim3 dimGrid(100, 100, 1);

Kernel<<<dimGrid, dimBlock>>>(…);

◦ However, we'll often only work with 1
dimensional grids and blocks

◦ e.g. Kernel<<<block_count, block_size>>>(…);

Inside a GPU

 Maximum number of threads per block
count is usually 512 or 1024 depending
on the machine

 Maximum number of blocks per grid is
usually 65535
◦ If you go over either of these numbers

your GPU will just give up or output
garbage data

◦ Much of GPU programming is dealing
with this kind of hardware limitations!
Get used to it

◦ This limitation also means that your
Kernel must compensate for the fact that
you may not have enough threads to
individually allocate to your data points

◦ Will show how to do this later (this lecture)

Inside a GPU
 Each block is assigned to an SM

 Inside the SM, the block is divided into
Warps of threads
◦ Warps consist of 32 threads

◦ CUDA defined constant in cuda_runtime.h

◦ All 32 threads MUST run the exact
same set of instructions at the same
time

◦ Due to the fact that there is only one
instruction unit

◦ Warps are run concurrently in an SM

◦ If your Kernel tries to have threads do
different things in a single warp (using
if statements for example), the two tasks
will be run sequentially
◦ Called Warp Divergence (NOT GOOD)

Inside a GPU
(fun hardware info)

 In Fermi Architecture (i.e. GPUs with
Compute Capability 2.x), each SM has
32 cores, later architectures have more.

◦ e.g. GTX 400, 500 series

◦ 32 cores is not what makes each
warp have 32 threads. Previous
architecture also had 32 threads per
warp but had less than 32 cores per
SM

◦ Some early Pascal (2016) GPUs (GP100) had
64 cores per SM, but later chips in that
generation (GP104) had 128 core model.

◦ Turing (2018) maintains 128 core standard

Streaming
Multiprocessor

• Shown here is a Pascal GP104 GPU
Streaming Multiprocessor that can be found
in a GTX1080 graphics card.

• The exact amount of Cache and Shared
Memory differ between GPU models, and
even more so between different
architectures.
• Whitepapers with exact information

can be gotten from Nvidia (use Google)
• https://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINA
L.pdf

• http://www.nvidia.com/content/PDF/product-
specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf

• “nvidia kepler whitepaper”

https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
http://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
http://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf

A[] + B[] -> C[] (again)

A[] + B[] -> C[] (again)

A[] + B[] -> C[] (new!!)

Questions for hardware?

Stuff that will be useful later

Stuff that will be useful later

Stuff that will be useful later

Next Time...
 Global Memory access is not that fast

◦ Tends to be the bottleneck in many GPU programs

◦ Especially true if done stupidly

◦ We'll look at what "stupidly" means

 Optimize memory access by utilizing hardware specific memory access
patterns

 Optimize memory access by utilizing different caches that come with
the GPU

