
CS 179:

Introduction to GPU Programming.

Lecture 1: Introduction

Images: http://en.wikipedia.org

http://www.pcper.com

http://northdallasradiationoncology.com/

GPU Gems (Nvidia)

https://en.wikipedia.org/wiki/Graphics_processing_unit

Administration

Main topics covered in course:

• (GP)GPU computing/parallelization

• C++ CUDA (parallel computing platform)

TAs:

• Ethan Jaszewski (ejaszews@caltech.edu)

• Ivy Tang (itang@caltech.edu)

• Thomas Barrett (tbarrett@caltech.edu)

• Alvin On (aon@caltech.edu)

Overseeing Instructor:

Al Barr (barr@cms.caltech.edu)

.

https://en.wikipedia.org/wiki/CUDA
mailto:ejaszews@caltech.edu
mailto:itang@caltech.edu
mailto:tbarrett@caltech.edu
mailto:aon@caltech.edu
mailto:barr@cms.caltech.edu

• Primary Websites:
• http://courses.cms.caltech.edu/cs179/

• http://www.piazza.com/caltech/spring2021/cs179
• Piazza is the primary forum for the course! Make sure

you’re enrolled!

• Also CS179 Canvas Calendar for Zoom links.

• Class time:
• MW(F) 3pm PDT for Zoom classes and HW

recitations.

• Also TA office hours through Zoom (TBA)

http://courses.cms.caltech.edu/cs179/
http://courses.cms.caltech.edu/cs179/
http://www.piazza.com/caltech/spring2021/cs179

Course Requirements

Please fill out survey on Piazza for the when2meet link coming

up on Piazza, for desired TA office hours

Homework:
• 6 assignments, perhaps in 5 weeks due to COVID-19

• Each worth 10% of grade

• Also “enough” work before Add Day, to pass!

Final project:
• 4-week project

• 40% of grade total

P/F Students must receive at least 60% on every assignment AND

the final project.

Homework

Due on Tuesdays 3PM PDT.

First set is due Tuesday April 6th
• Use zip on remote GPU computer at Caltech to submit HW.

Collaboration policy:
• Discuss ideas and strategies freely, but all code must be your own

• Do NOT look up prior years solutions or reference solution code

from github without prior TA approval

• Use additional backup method for work, on a different computer.

• Make your github repository *Private*!

Office Hours: Will be interactive, through Zoom.
• Times: TBA, based on survey. Survey timezone is in PDT.

Extensions
• Ask a TA for one if you have a valid reason

• See main website for details.

Your GPU Project

Project can be a topic of your choice
• We will also provide many options

Teams of up to 2 people
• 2-person teams will be held to higher

expectations

Requirements
• Project Proposal

• Progress report(s) and Final Presentation

• More info later…

Caltech Machine and your accounts now available.

The Primary GPU machine is set up and available
• You should have received a user account in email.

• Please test access and change your password.

• GPU-enabled machine is on the Caltech campus.

• Let us know if you have problems!

• You’ll be submitting HW on this computer.

Secondary CMS GPU machines are too old and are no longer

operational.

Alternative GPU Machines

Alternative: Use your own machine.
You will still have to submit HW on the Caltech GPU machine.

• Must have an NVIDIA CUDA-capable GPU
• At least Compute 3.0

• Virtual machines generally won’t work
• Exception: Machines with I/O MMU virtualization and certain

GPUs

• Special requirements for:
• Hybrid/Optimus systems (laptops)

• Mac/OS X (probably no longer supported?)

Setup guide on the website is likely outdated. Can

follow NVIDIA’s posted installation instructions (linked

on page). Ubuntu 20.04 or later ay be easiest to install!

https://en.wikipedia.org/wiki/X86_virtualization
https://en.wikipedia.org/wiki/Nvidia_Optimus
https://en.wikipedia.org/wiki/Nvidia_Optimus
https://en.wikipedia.org/wiki/Nvidia_Optimus
http://releases.ubuntu.com/20.04/
http://releases.ubuntu.com/20.04/
http://releases.ubuntu.com/20.04/

The CPU

The “Central Processing Unit”

Traditionally, applications use CPU for primary

calculations
• General-purpose capabilities, mostly sequential operations

• Established technology

• Usually equipped with 8 or fewer, powerful cores

• Optimal for some types of concurrent processes but not

large scale parallel computations

Wikimedia commons: Intel_CPU_Pentium_4_640_Prescott_bottom.jpg

https://en.wikipedia.org/wiki/Central_processing_unit
https://www.howtogeek.com/194756/cpu-basics-multiple-cpus-cores-and-hyper-threading-explained/
https://en.wikipedia.org/wiki/Parallel_computing

The GPU

The "Graphics Processing Unit"

Relatively new technology designed for parallelizable problems
• Initially created specifically for graphics

• Became more capable of general computations

• Very fast and powerful, computationally

• Uses lots of electrical power

https://en.wikipedia.org/wiki/Graphics_processing_unit

GPUs – Some of the Motivation

Raytracing:

for all pixels (i,j) in image:

 From camera eye point,
 calculate ray point and direction in 3d space

 if ray intersects object:

 calculate lighting at closest object point

 store color of (i,j)
Assemble into image file

Superquadric Cylinders, exponent 0.1, yellow glass balls, Barr, 1981

Each pixel could be computed

simultaneously, with enough

parallelism!

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Pinhole_camera_model
https://en.wikipedia.org/wiki/Ray_(optics)
https://en.wikipedia.org/wiki/Computer_graphics_lighting
https://en.wikipedia.org/wiki/Image_file_formats

SIMPLE EXAMPLE

Add two arrays, A and B to produce array C
• A[] + B[] -> C[]

On the CPU:

float *C = malloc(N * sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];
return C;

On CPUs the above code operates sequentially, but can we

do better, still on CPUs?

https://en.wikipedia.org/wiki/Sequential_algorithm

A simple problem…

• On the CPU (multi-threaded, pseudocode):

(allocate memory for array C)

Create # of threads equal to number of cores on processor
(around 2, 4, perhaps 8?)

(Indicate portions of arrays A, B, C to each thread...)

...

In each thread,

For (i from beginning region of thread)

C[i] <- A[i] + B[i]

//lots of waiting involved for memory reads, writes, ...

Wait for threads to synchronize...

This is slightly faster – 2-8x (can be slightly more with other tricks)

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Synchronization_(computer_science)

A simple problem…

• How many threads are available on the CPUs? How can the

performance scale with thread count?
• (Each CPU can generally have two threads).

• Context switching:
• The action of switching which thread is being processed

• High penalty on the CPU (main computer)

• Not a big issue on the GPU

https://en.wikipedia.org/wiki/Thread
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Context_switch

A simple problem…

• On the GPU:

(allocate memory for arrays A, B, C on GPU)

Create the “kernel” – where each thread will perform one (or a
few) additions

 Specify the following kernel operation:

 For all i‘s (indices) assigned to this thread:

 C[i] <- A[i] + B[i]

Start ~20000 (!) threads all at the same time!

Wait for threads to synchronize...

https://en.wikipedia.org/wiki/Compute_kernel

GPU: Strengths Revealed

• Emphasis on parallelism on GPUs means we have lots of

cores

• This allows us to run many threads simultaneously with

virtually no context switches

GPUs – Brief History

• Initially based on graphics focused

fixed-function pipelines (history)
• Pre-set pixel/vertex functions, limited

options

http://gamedevelopment.tutsplus.com/articles/the-end-of-

fixed-function-rendering-pipelines-and-how-to-move-on--

cms-21469

Source: Super Mario 64, by Nintendo

https://www.slideshare.net/SakshamTanwar1/nvidia-history-gpu-architecture-and-new-pascal-architecture
https://en.wikipedia.org/wiki/Shader

GPUs – Brief History

• Shaders
• Can implement one’s own functions using graphics routines.

• GLSL (C-like language), discussed in CS 171

• Can “sneak in” general-purpose programming! Uses pixel and

vertex operations instead of general purpose code. Very crude.

• Vulkan/OpenCL is the modern multiplatform general purpose GPU

compute system, but we won’t be covering it in this course

http://minecraftsix.com/glsl-shaders-mod/

https://en.wikipedia.org/wiki/OpenGL_Shading_Language
https://en.wikipedia.org/wiki/Vulkan_(API)
https://en.wikipedia.org/wiki/OpenCL

Using GPUs as “supercomputers”

“General-purpose computing on GPUs” (GPGPU)

• Hardware has gotten good enough to a point where it’s basically

having a mini-supercomputer

CUDA (Compute Unified Device Architecture)

• General-purpose parallel computing platform for NVIDIA GPUs

Vulkan/OpenCL (Open Computing Language)

• General heterogenous computing framework

Both are accessible as extensions to various languages

• If you’re into python, checkout Theano, pyCUDA.

Upcoming GPU programming environment: Julia Language

https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Theano_(software)
https://developer.nvidia.com/pycuda
https://en.wikipedia.org/wiki/Julia_(programming_language)

GPU Computing: Step by Step

• Setup inputs on the host (CPU-accessible memory)

• Allocate memory for outputs on the host CPU

• Allocate memory for inputs on the GPU

• Allocate memory for outputs on the GPU

• Copy inputs from host to GPU (slow)

• Start GPU kernel (function that executes on gpu – fast!)

• Copy output from GPU to host (slow)

NOTE: Copying can be asynchronous, and unified memory

management is available

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/

The Kernel

• This is our “parallel” function

• Given to each thread

• Simple example, implementation:

Indexing

Can get a block ID and thread ID within the block:
Unique thread ID!

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://en.wikipedia.org/wiki/Thread_block

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://en.wikipedia.org/wiki/Thread_block

Calling the Kernel

Calling the Kernel (2)

GPU Computing Examples

• Solving PDEs on GPUs

• GPU vs CPU fluid mechanics

• Ray Traced Quaternion fractals and Julia Sets

• Deep Learning and GPUs

• Real-Time Signal Processing with GPUs

https://people.maths.ox.ac.uk/gilesm/talks/STAC_14.pdf
https://www.youtube.com/watch?v=fE0P6H8eK4I
https://youtu.be/hNaHf-Y7iqI
https://www.ignorantus.com/gpu_hacks/
https://www.youtube.com/watch?v=6stDhEA0wFQ
https://developer.nvidia.com/gtc/2019/video/S9286
https://developer.nvidia.com/gtc/2019/video/S9286
https://developer.nvidia.com/gtc/2019/video/S9286

Questions can be live and interactive, on Zoom

during office hours. Also can be posted on Piazza.

