CS 179: LECTURE 14

NEURAL NETWORKS AND BACKPROPAGATION

LAST TIME

- Intro to machine learning
- Linear regression
 - https://en.wikipedia.org/wiki/Linear_regression
- Gradient descent
 - https://en.wikipedia.org/wiki/Gradient_descent
- (Linear classification = minimize cross-entropy)
 - https://en.wikipedia.org/wiki/Cross_entropy

TODAY

- Derivation of gradient descent for <u>linear classifier</u>
 - https://en.wikipedia.org/wiki/Linear_classifier
- Using linear classifiers to build up neural networks
- Gradient descent for neural networks (<u>Back Propagation</u>)
 - https://en.wikipedia.org/wiki/Backpropagation

REFRESHER ON THE TASK

- We are given $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ as training data
- We want to classify each input x into one of m classes
- Each $x^{(n)}$ is a d-dimensional column vector $(x_1^{(n)}, ..., x_d^{(n)})^T$
- Each $y^{(n)}$ is a m-dimensional column vector $(y_1^{(n)}, ..., y_m^{(n)})^T$
- $y_k^{(n)} = 1$ iff class $(x^{(n)}) = k$; otherwise, $y_k^{(n)} = 0$

EXAMPLE OF (x, y) PAIRS

■ Note "Grandmother Cell" representation for {x,y} pairs. See https://en.wikipedia.org/wiki/Grandmother_cell

REFRESHER ON THE TASK

- lacksquare Our model is parametrized by a matrix $\mathbf{W} \in \mathbb{R}^{(d+1) imes m}$
- Given a d-dimensional input vector $x = (x_1, ..., x_d)^T$ and denoting $x' = (1, x_1, ..., x_d)^T$, we compute an m-dimensional output vector $z = \mathbf{W}^T x'$
- We then classify x as the class corresponding to the index of z with the largest value
- Find i for z_i: "Best-index" -- estimated "Grandmother Cell" Neuron
- Can use <u>parallel GPU reduction</u> to find "i" for largest value.

- We will be going through some extra steps to derive the gradient of the linear classifier --
- We'll be using the "Softmax function"
 - https://en.wikipedia.org/wiki/Softmax_function
- Similarities will be seen when we start talking about neural networks

Define intermediate variables

$$z = \mathbf{W}^T x'$$

$$p_k = \frac{\exp(z_k)}{\sum_{j=1}^m \exp(z_j)}; \ p = (p_1, ..., p_m)^T$$

$$J = -\sum_{k=1}^{m} y_k \ln(p_k)$$

• Simplify derivatives using the multivariate chain rule and the fact that $z_j = \sum_{i=0}^d \mathbf{W}_{ij} x_i$ (with $x_0 = 1$)

$$\frac{\partial J}{\partial \mathbf{W}_{ij}} = \sum_{k=1}^{m} \frac{\partial J}{\partial z_k} \frac{\partial z_k}{\partial \mathbf{W}_{ij}} = x_i \frac{\partial J}{\partial z_j}$$

$$\frac{\partial J}{\partial z_j} = -\sum_{i=1}^m \frac{y_i}{p_i} \frac{\partial p_i}{\partial z_j}$$

Compute the gradient of the softmax function

$$\frac{\partial p_j}{\partial z_i} = \begin{cases} p_i (1 - p_j) & i = j \\ -p_i \cdot p_j & \text{otherwise} \end{cases}$$

Substituting this into the previous gradient, we can show

$$\frac{\partial J}{\partial z_i} = p_i - y_i = \begin{cases} p_i - 1 & \text{class}(x) = i \\ p_i & \text{otherwise} \end{cases}$$

 Then, the gradient of the linear classifier's loss function wrt its parameters is

$$\frac{\partial J}{\partial \mathbf{W}_{ij}} = \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial \mathbf{W}_{ij}} = x_i (p_j - y_j)$$
$$\nabla_{\mathbf{W}} [J] = x' (p - y)^T$$

■ More linear algebra! Again, GPU's are great for this stuff ©

GRADIENT DESCENT

- How do we find $w^* = \underset{w \in \mathbb{R}^{d+1}}{\operatorname{argmin}} J(w; \mathbf{X}, \mathbf{Y})$?
- A function's gradient points in the direction of
- steepest ascent, and its negative in the direction of steepest descent
- Following the gradient downhill will cause us to converge to a local minimum!

GRADIENT DESCENT, REVIEW

GRADIENT DESCENT IN ND

GRADIENT DESCENT

- Fix some constant learning rate η (0.03 is usually a good place to start)
- Initialize w randomly
- Typically select each component of w independently from some standard distribution (uniform, normal, etc.)
- While w is still changing (hasn't converged)
 - Update $w \leftarrow w \eta \nabla J(w; \mathbf{X}, \mathbf{Y})$

STOCHASTIC GRADIENT DESCENT

- The previous algorithm computes the gradient over the entire data set before stepping.
 - Called batch gradient descent
- What if we just picked a single data point $(x^{(i)}, y^{(i)})$ at random, computed the gradient for that point, and updated the parameters?
 - Called stochastic gradient descent

STOCHASTIC GRADIENT DESCENT

- Advantages of SGD
 - Easier to implement for large datasets
 - Works better for non-convex loss functions
- Sometimes faster
- Often use SGD on a "mini-batch" of k examples rather than just one at a time
 - Allows higher throughput and more parallelization

STOCHASTIC GRADIENT DESCENT, FOR W

- While W has not converged
 - For each data point (x, y) in the data set
 - Compute $z = \mathbf{W}^T x'$
 - Compute $p = \frac{\exp(z)}{\sum_{k=1}^{m} \exp(z_k)}$
 - Update $\mathbf{W} \leftarrow \mathbf{W} \eta \ x'(p-y)^T$
- Alternatively, update per mini-batch instead of per data point

LIMITATIONS OF LINEAR MODELS

- Most real-world data is not separable by a linear decision boundary
 - Simplest example: XOR gate
- What if we could combine the results of multiple linear classifiers?
 - Combine two OR gates with an AND gate to get a XOR gate

ANOTHER VIEW OF LINEAR MODELS

- Combine all the components x_i of our input x in different
- ways in order to get different outputs z_i
- Push z through some nonlinear function θ (e.g. softmax)

NEURAL NETWORKS

- What if we used each $\theta(z_j)$ as the input to another classifier?
- This lets us compose multiple linear decision boundaries!

NEURAL NETWORKS

- Why the nonlinearity θ ?
 - $\mathbf{W}^{(2)^T} \left(\mathbf{W}^{(1)^T} x' \right)$ is still a linear function x
- $\mathbf{W}^{(2)^T} \theta \left(\mathbf{W}^{(1)^T} x' \right)$ is no longer a linear function in x
 - lacksquare makes the model more expressive
- The nonlinearity θ is also known as an <u>activation function</u>

EXAMPLES OF ACTIVATION FNS

- $\theta(z) = \max(0, z)$ (ReLU activation) is most common
- $\theta(z) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ (tanh function) is occasionally used as well
- Note that most derivatives of tanh function will be zero!
 Makes for much needless computation in gradient descent!

MORE ACTIVATION FUNCTIONS

- https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
- Tanh and sigmoid used historically. Many zero gradient values inefficient.

RELU (RECTIFIED LINEAR) ACTIVATION FUNCTION

- https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
- Good, many nonzero derivatives! More "signal" than tanh.
- Oops, leads to other problems, requiring "adversarial networks!"

An adversarial input, overlaid on a typical image, can cause a classifier to miscategorize

ZEBRA STRIPES CONFUSE FLY VISION!

https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-itsstripes-to-deter-flies-from-landing-on-it

Pattern seems to confuse flies, researchers who dressed horses up as zebras find

OTHER ACTIVATION FUNCTIONS FOR NNS...

- https://en.wikipedia.org/wiki/Activation_function
- Tanh activation
- Linear activation: $\phi(\mathbf{v}) = a + \mathbf{v}'\mathbf{b}$,
- ullet ReLU activation: $\phi(\mathbf{v}) = \max(0, a + \mathbf{v}'\mathbf{b})$,
- ullet Heaviside activation: $\phi(\mathbf{v}) = 1_{a+\mathbf{v}'\mathbf{b}>0}$,
- Logistic activation:

$$\phi(\mathbf{v}) = (1 + \exp(-a - \mathbf{v}'\mathbf{b}))^{-1}$$
.

UNIVERSAL APPROXIMATOR THM

- It is possible to show that if your neural network is big enough, it can approximate any continuous function arbitrarily well! (Hornik 1991)
- This is why neural nets are important. Can learn almost "anything!"
- Lapedes Theorem shows you only "need" two hidden layers.
 - https://dl.acm.org/doi/10.5555/2969644.2969691 (1987)

NEURAL NETWORKS

- But why stop at just 2 layers of linear function/nonlinearity?
- We can have arbitrarily many L layers!
 - $x^{(\ell-1)}$ is the input to layer ℓ ($x^{(0)}$ is the data given)
- $x^{(\ell)} = \theta^{(\ell)} \left(\mathbf{W}^{(\ell)} x^{(\ell-1)} \right)$ is the output of layer ℓ
 - The loss function is applied to $x^{(L)} = \theta^{(L)}(z^{(L)})$ (the final output), though it is sometimes easier to apply it to $z^{(L)}$ directly (e.g. softmax cross-entropy loss w/ linear classifier)

BACK PROPAGATION GRADIENT

- So how do we take the gradient of a neural network with respect to every parameter matrix $\mathbf{W}^{(1)}$, ..., $\mathbf{W}^{(L)}$?
- Define $z^{(\ell)} = \mathbf{W}^{(\ell)^T} x^{(l-1)'}$ and $\delta^{(\ell)} = \nabla_{z^{(\ell)}}[J]$. By chain rule,

$$\frac{\partial J}{\partial \mathbf{W}_{ij}^{(\ell)}} = \sum_{k=1}^{d_{\ell}} \frac{\partial J}{\partial z_{k}^{(\ell)}} \frac{\partial z_{k}^{(\ell)}}{\partial \mathbf{W}_{ij}^{(\ell)}} = x_{i}^{(\ell-1)} \frac{\partial J}{\partial z_{j}^{(\ell)}} = x_{i}^{(\ell-1)} \delta_{j}^{(\ell)}$$

$$\nabla_{\mathbf{W}^{(\ell)}}[J] = x^{(\ell-1)'} \delta^{(\ell)}^T$$

BACK PROPAGATION TERM

• To find $\delta^{(\ell)} = \nabla_{z^{(\ell)}}[J]$, apply the chain rule again:

$$\frac{\partial J}{\partial z_i^{(\ell-1)}} = \frac{\partial J}{\partial x_i^{(\ell-1)}} \frac{\partial x_i^{(\ell-1)}}{\partial z_i^{(\ell-1)}} = \frac{\partial J}{\partial x_i^{(\ell-1)}} \theta^{(\ell-1)'} \left(z_i^{(\ell-1)} \right)$$

$$\frac{\partial J}{\partial x_i^{(\ell-1)}} = \sum_{j=0}^{d_\ell} \frac{\partial J}{\partial z_j^{(\ell)}} \frac{\partial z_j^{(\ell)}}{\partial x_i^{(\ell-1)}} = \sum_{j=0}^{d_\ell} \delta_j^{(\ell)} \mathbf{W}_{ij}^{(\ell)} = \left(\mathbf{W}^{(\ell)} \delta^{(\ell)} \right)_i$$

$$\delta_i^{(\ell-1)} = \theta^{(\ell-1)'} \left(z_i^{(\ell-1)} \right) \left(\mathbf{W}^{(\ell)} \delta^{(\ell)} \right)_i$$

BACK PROPAGATION ALGORITHM

- We know $x^{(0)}$ and the current values of $\mathbf{W}^{(1)}$, ..., $\mathbf{W}^{(L)}$
- If we do a forward pass through the neural network, we will compute every $x^{(1)}, ..., x^{(L)}$ and $z^{(1)}, ..., z^{(L)}$
- From the linear classifier, we know that $\delta^{(L)} = x^{(L)} y$
- $\theta^{(\ell-1)'}\left(z_i^{(\ell-1)}\right)$ is easy to compute
- We have all we need to do stochastic gradient descent!

BACK PROPAGATION ALGORITHM

- Fix a learning rate η and initialize $\mathbf{W}^{(1)}$, ..., $\mathbf{W}^{(L)}$ randomly
- For each data point $(x^{(0)}, y)$ in the data set
 - Compute each $z^{(\ell)} = \mathbf{W}^{(\ell)} x^{(\ell-1)}$ and $x^{(\ell)} = \theta^{(\ell)} (z^{(\ell)})$
 - Initialize $\delta^{(L)} = x^{(L)} y$
- For each ℓ counting down from L to 1
 - Calculate $\alpha^{(\ell)} = \nabla_{\chi^{(\ell-1)}}[J] = \mathbf{W}^{(\ell)}\delta^{(\ell)}$
 - $\qquad \text{Set } \delta_i^{(\ell-1)} = \alpha_i^{(\ell)} \theta^{(\ell-1)'} \left(z_i^{(\ell-1)} \right) \text{ for each } i=1,\ldots,d_{\ell-1}$
 - Update $\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)} \eta \left(x^{(\ell-1)} \delta^{(\ell)} \right)$

BACKPROPAGATION

- Forward pass
 - We are given $x^{(0)}$
 - $x^{(\ell+1)}$ depends on $z^{(\ell+1)}$, which depends on $x^{(\ell)}$
- Backward pass
 - We have $\delta^{(L)}$ from the forward pass
 - $\delta^{(\ell-1)}$ depends on $\delta^{(\ell)}$
 - We need $\delta^{(\ell)}$ because $\nabla_{\mathbf{W}^{(\ell)}}[J]$ depends on $\delta^{(\ell)}$

BACKPROPAGATION

- This is stochastic gradient descent for a neural network!
- In Homework #5, you will:
 - Implement a linear classifier
 - Extend it to a 2-layer neural network using "minibatch" SGD
- Before discussing implementation details, let's talk about parallelizing the backpropagation algorithm

PARALLELIZATION

- By its nature, the backpropagation algorithm seems fundamentally sequential
- However, each sequential step is a linear algebra operation
 - Parallelize with cuBLAS
- Minibatch stochastic gradient descent
 - Compute the gradient for each data point in the minibatch
 - Use a parallel reduction to take the average at the end

USING MINIBATCHES

- Consider a minibatch size of k
 - Construct a $d_{\ell} \times k$ matrix $\mathbf{X}^{(\ell)}$ where column i is the $x^{(\ell)}$ corresponding to data point i in the mini-batch
- Construct a $d_\ell \times k$ matrix $\Delta^{(\ell)}$ where column i is the $\delta^{(\ell)}$ corresponding to data point i in the mini-batch
 - Define $\mathbf{Z}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{X}^{(\ell-1)}$
- After fixing a learning rate η and initializing $\mathbf{W}^{(1)}, ..., \mathbf{W}^{(\ell)}$ randomly, we have the following algorithm:

USING MINIBATCHES

- For each minibatch $(\mathbf{X}^{(0)}, \mathbf{Y})$ of size k in the data set
 - Compute each $\mathbf{Z}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{X}^{(\ell-1)}$ and $\mathbf{X}^{(\ell)} = \theta^{(\ell)} (\mathbf{Z}^{(\ell)})$
 - Initialize $\Delta^{(L)} = \mathbf{X}^{(L)} \mathbf{Y}$
- For each ℓ counting down from L to 1
 - Calculate $\mathbf{A}^{(\ell)} = \nabla_{\mathbf{X}^{(\ell-1)}}[J] = \mathbf{W}^{(\ell)}\Delta^{(\ell)}$
 - $= \text{Set } \Delta_{ij}^{(\ell-1)} = \mathbf{A}_{ij}^{(\ell)} \theta^{(\ell-1)'} \left(\mathbf{Z}_{ij}^{(\ell-1)} \right) \text{ for all } i = 1, \dots, d_{\ell-1} \text{ and } j = 1, \dots, k$
 - Update $\mathbf{W}^{(\ell)} \leftarrow \mathbf{W}^{(\ell)} \frac{1}{k} \eta \left(\mathbf{X}^{(\ell-1)'} \Delta^{(\ell)}^T \right)$

IMPLEMENTATION

- You can do all the matrix multiplications using cuBLAS
- The only new computation is $\Delta_{ij}^{(\ell-1)} = \mathbf{A}_{ij}^{(\ell)} \theta^{(\ell-1)'} \left(\mathbf{Z}_{ij}^{(\ell-1)} \right)$
- This differentiation and pointwise multiplication step (and much more) is done for you for free by another CUDA package called cuDNN (Deep Neural Nets)
- Next time, you will learn the basics of cuDNN