CS 179:LECTURE 14

NEURAL NETWORKS AND
BACKPROPAGATION

LAST TIME

" Intro to machine learning

" Linear regression

m https://en.wikipedia.org/wiki/Linear_regression
= Gradient descent

m https://en.wikipedia.org/wiki/Gradient descent

" (Linear classification = minimize cross-entropy)

m https://en.wikipedia.org/wiki/Cross_entropy

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Cross_entropy

TODAY

® Derivation of gradient descent for linear classifier

m https://en.wikipedia.org/wiki/Linear_classifier

= Using linear classifiers to build up neural networks

= Gradient descent for neural networks (Back Propagation)

m https://en.wikipedia.org/wiki/Backpropagation

https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Backpropagation

REFRESHER ON THE TASK

= We are given {(x1, y®), .., (x™), y(M)} as training data

= We want to classify each input x into one of m classes

T
= Each x™ is a d-dimensional column vector (xf"’), . xé"))

T
= Each y™ is a m-dimensional column vector (yl(n),) y,%n))

. y,ﬁ”) = 1 iff class(x™)) = k; otherwise, y’En) =0

EXAMPLE OF (x,y) PAIRS

CoLoly (ol (B (L]

3. o 3. , etc.

cCoCcooR OO

CoocoOoOROOCOOO

»:::ac:ac:ac::c::c::a::c::c:ar—'¥

—
oo ococoo0OoO RO

S F VN i VAN K VAN K

= Note “Grandmother Cell” representation for {x,y} pairs.
See https://en.wikipedia.org/wiki/Grandmother_cell

o

https://en.wikipedia.org/wiki/Grandmother_cell

REFRESHER ON THE TASK

= Our model is parametrized by a matrix W € R{¢+Dxm

= Given a d-dimensional input vector x = (x4, ..., xz)" and
denoting x’ = (1, x4, ..., x4)", we compute an m-dimensional
output vector z = W' x'

= We then classify x as the class corresponding to the index of

z with the largest value
" Findifor z: “Best-index” -- estimated“Grandmother Cell” Neuron

€69
I

= Can use parallel GPU reduction to find for largest value.

LINEAR CLASSIFIER GRADIENT

= Ve will be going through some extra steps to derive the
gradient of the linear classifier --

= We'll be using the ‘Softmax function”

m https://en.wikipedia.org/wiki/Softmax_function

= Similarities will be seen when we start talking about neural
networks

https://en.wikipedia.org/wiki/Softmax_function

LINEAR CLASSIFIER | & GRADIENT

= Define intermediate variables

7z =WTx'

exp(zy)
2.j=1 €Xp (Zj

J=- Z Vi In(py)
k=1

D =); p =P, D)’

LINEAR CLASSIFIER GRADIENT

= Simplify derivatives using the multivariate chain rule and the
fact that Zj = Z?:O WU Xi (Wlth Xo = 1)

] ~— 9] 0z 3]

— = X; —

6WU B ' 6zk HWU l aZJ

k=

m
a9 Vi 0P

sz B = Di aZ]

LINEAR CLASSIFIER GRADIENT

= Compute the gradient of the softmax function

9p; _ [pi(1—p;) L =]
0z; —Pi " Dj otherwise

= Substituting this into the previous gradient, we can show

LINEAR CLASSIFIER GRADIENT

= Then, the gradient of the linear classifier’s loss function wrt
Its parameters is

= More linear algebra! Again, GPU’s are great for this stuff ©

GRADIENT DESCENT

How do we find w*™ = argmin J(w; X, Y)?
WERd-'-l

= A function’s gradient points in the direction of

. steepest ascent,and its negative in the direction

of steepest descent

= Following the gradient downhill will cause us to
converge to a local minimum!

GRADIENT DESCENT, REVIEW

T J(w) V/(w) il /:J!:::g

GRADIENT DESCENT IN NP

Surface Plot of f(x1,x2) | Contour Plot of f(x1.x2)
10

(=2}

i

X2

1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 L 1
BT T T T T 1T T T .
o %]

GRADIENT DESCENT

" Fix some constant learning rate n (0.03 is usually a good
place to start)

= |nitialize w randomly

* = Typically select each component of w independently from
some standard distribution (uniform, normal, etc.)

= While w is still changing (hasn’t converged)
= Updatew « w—nVJ(w;X,Y)

STOCHASTIC GRADIENT DESCENT

= The previous algorithm computes the gradient over the
entire data set before stepping.

= Called batch gradient descent

B What if we just picked a single data point (x(i),y(i)) at
random, computed the gradient for that point,and updated
the parameters!?

= (Called stochastic gradient descent

STOCHASTIC GRADIENT DESCENT

= Advantages of SGD

= Easier to implement for large datasets
= Works better for non-convex loss functions
" ® Sometimes faster

= Often use SGD on a “mini-batch” of k examples rather than
just one at a time

= Allows higher throughput and more parallelization

STOCHASTIC GRADIENT DESCENT, FOR W

= While W has not converged

= For each data point (x, y) in the data set

= Compute z = WTx'

exp(z)
= Compute p = T exp(z0)

= Update W« W —nx'(p —y)T

= Alternatively, update per mini-batch instead of per data point

LIMITATIONS OF LINEAR MODELS

= Most real-world data is not separable by a linear decision
boundary

= Simplest example: XOR gate

® What if we could combine the results of multiple linear
classifiers!?

= Combine two OR gates with an AND gate to get a XOR gate

ANOTHERVIEW OF LINEAR MODELS

= Combine all the components x; of our input x in different
ways in order to get different outputs z;

= Push z through some nonlinear function @ (e.g. softmax)

f(x)

NEURAL NETWORKS

= What if we used each 6(z;) as the input to another classifier?

® This lets us compose multiple linear decision boundaries!

NEURAL NETWORKS

= Why the nonlinearity 6?

T T
s W@ (W(l) x’) is still a linear function x

. T T
= W2 g (W(l) x’) is no longer a linear function in x

= @ makes the model more expressive

= The nonlinearity @ is also known as an activation function

EXAMPLES OF ACTIVATION FNS

= 0(z) = max(0,z) (ReLU activation) is most common

—x

x 9(z) == e =

e*+e™*

(tanh function) is occasionally used as well

= Note that most derivatives of tanh function will be zero!
Makes for much needless computation in gradient descent!

MORE ACTIVATION FUNCTIONS

m https://medium.com/@shrutijadon 10104776/survey-on-
activation-functions-for-deep-learning-968933 [ba092

® Tanh and sigmoid used historically. Many zero gradient values — inefficient.
Leaky ReLU)
max(0.1z, z)

tanh | Maxout

tanh(z) o max(wi z + by, wd T + bs)

ReLU 1 / ELU J

T x>0
- . {a(e“"” —-1) z<0 - 2 i

Sigmoid
TFe=s

o(z) =

max (0,)

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

RELU (RECTIFIED LINEAR) ACTIVATION FUNCTION

m https://en.wikipedia.org/wiki/Rectifier (neural networks)

= Good, many nonzero derivatives! More “signal” than tanh.

® Oops, leads to other problems, requiring “adversarial networks!”

Nonlinearities

2.57 — RelU

- GELU
2.0 A1

1.5 1

1.0 A

0.5 A1

0.0 1

T T T T T

-2 -1 0 1 2
Plot of the RelU rectifier (blue) and o
GELU (green) functions near x =0

An adversarial input, overlaid on a typical image, can cause a classifier to miscategorize

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

ZEBRA STRIPES CONFUSE FLY VISION!

m https://www.theguardian.com/science/20 | 9/feb/20/why-the-zebra-got-its-
stripes-to-deter-flies-from-landing-on-it

Pattern seems to confuse flies, researchers who dressed horses up
as zebras find

https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it
https://www.theguardian.com/science/2019/feb/20/why-the-zebra-got-its-stripes-to-deter-flies-from-landing-on-it

OTHER ACTIVATION FUNCTIONS FOR NNS...

m https://en.wikipedia.org/wiki/Activation_function

® Tanh activation

e Linear activation: ¢(v) = a + v'b,
e RelU activation: ¢(v) = max(0,a + v'b),

e Heaviside activation: q‘)(v) = 1,1 vb>0,

e L ogistic activation:

o(v) = (1 + exp(—a — v'b)) 1.

https://en.wikipedia.org/wiki/Activation_function

UNIVERSAL APPROXIMATOR THM

= |t is possible to show that if your neural network is big
enough, it can approximate any continuous function
arbitrarily well! (Hornik 1991)

= This is why neural nets are important. Can learn almost
“anything!”

= |Lapedes Theorem shows you only “need” two hidden layers.
m https://dl.acm.org/doi/10.5555/2969644.2969691 (1987)

https://dl.acm.org/doi/10.5555/2969644.2969691

NEURAL NETWORKS

= But why stop at just 2 layers of linear function/nonlinearity?

= We can have arbitrarily many L layers!

= x~1 s the input to layer £ (x(?) is the data given)
= x0) =@ (W(‘E)Tx(f‘l)’) is the output of layer ¢

= The loss function is applied to x&) = 8 (z(1)) (the final

output), though it is sometimes easier to apply it to z (L)
directly (e.g. softmax cross-entropy loss w/ linear classifier)

BACK PROPAGATION GRADIENT

= So how do we take the gradient of a neural network with
respect to every parameter matrix w L wk)

= Define zY) = W(’E)Tx(l_l)’ and 6§ = V_w[/]. By chain rule,

dyp

£

d] . E : da] 32;5) _ D d]
(¥) (%) (&) i (®)

GWU. 6zk OWU. azj

= x{D6®

l
k=1

PN
Vwoll = x&-1)" 5

BACK PROPAGATION TERM

= Tofind 60 = V_w /], apply the chain rule again:

(f-1)
d] _ dJ axl- _ d] 9(3—1)' (Z-(e_l))
azi({’—l) axi(f’—l) azi({’—l) axi(f’—l) L
dp (£) dp

6] _ Z aj aZj 2 5(€)w({’) (W(g)é.(f))

BACK PROPAGATION ALGORITHM

= We know x? and the current values of W(l), e w@)

= |f we do a forward pass through the neural network, we will
compute every xD, ..., x1) and zW, ..., z(W)

= From the linear classifier, we know that §&) = x(L) — y
s 9D’ (212(3—1)) is easy to compute

= We have all we need to do stochastic gradient descent!

BACK PROPAGATION ALGORITHM

= Fix a learning rate n and initialize W(l), . w® randomly

= For each data point (x(o),y) in the data set
= Compute each z(¥) = WO -1 10d @ = g® (Z(é’))
= |nitialize §®) = x) —y
" = For each £ counting down from L to 1
= Calculate a®® = V e-nlJ] = w @ 5@

= Set 57V = a0 (2{"V) for each i = 1,...,dp_,

= Update W) « W — (x(f’—l)a(t")T)

BACKPROPAGATION

= Forward pass

" We are given x(©

¢+ which depends on x)

= x*1) depends on z
= Backward pass

= We have 6§ from the forward pass

= §¢-1) depends on §&

= We need §%) because Viw®l/] depends on 6 (%)

BACKPROPAGATION

= This is stochastic gradient descent for a neural network!

" |n Homework #5, you will:
= |mplement a linear classifier

= Extend it to a 2-layer neural network using “minibatch” SGD

= Before discussing implementation details, let’s talk about
parallelizing the backpropagation algorithm

PARALLELIZATION

= By its nature, the backpropagation algorithm seems
fundamentally sequential

= However, each sequential step is a linear algebra operation
= Parallelize with cuBLAS

= Minibatch stochastic gradient descent
= Compute the gradient for each data point in the minibatch

® Use a parallel reduction to take the average at the end

USING MINIBATCHES

® Consider a minibatch size of k

= Construct a d, X k matrix X® where column i is the x®
corresponding to data point i in the mini-batch

= Construct a d, X k matrix A®) where column i is the §®
corresponding to data point i in the mini-batch

= Define Z(®) = w®' x-1’

= After fixing a learning rate 1 and initializing w , w®
randomly, we have the following algorithm:

USING MINIBATCHES

= For each minibatch (X(O),Y) of size k in the data set
= Compute each Z¥) = WO X1 and X©) = AAVAD)
= |nitialize AW = X —Y

= " For each £ counting down from L to 1

= Calculate AY) = Vye-nlJ] = WO AD)
= Set Ag—l) — Ag)g(e—w (zt_(f—l)) foralli=1,..,dp_;andj=1,..,k

= Update W) « W) — %?7 (x(f—l)'A(f’)T)

IMPLEMENTATION

= You can do all the matrix multiplications using cuBLAS

= The only new computation is Ag_l) = Ag?ﬂ(f_l)’ (Zg_l))

® This differentiation and pointwise multiplication step (and
much more) is done for you for free by another CUDA
package called cuDNN (Deep Neural Nets)

= Next time, you will learn the basics of cuDNN

