
CS 179: GPU
Programming

Lecture 7

Last Week

• Memory optimizations using different GPU
caches

• Atomic operations

• Synchronization with __syncthreads()

This week, Week 3

• More advanced GPU-accelerable algorithms

• “Reductions” to parallelize problems that might
not seem intuitively parallelizable

– Not the same as reductions in complexity theory or
machine learning!

– Lots of technical meanings for “Reduction” – see
https://en.wikipedia.org/wiki/Reduction

• See
https://en.wikipedia.org/wiki/Reduction_Operator

https://en.wikipedia.org/wiki/Reduction
https://en.wikipedia.org/wiki/Reduction
https://en.wikipedia.org/wiki/Reduction_Operator
https://en.wikipedia.org/wiki/Reduction_Operator

This Lecture -- Outline

• Reductions for GPUs

• Examples of GPU-accelerable algorithms:

– (To be used in combination for Quicksort!)

– Sum of array

– Prefix sum

– Stream compaction

– Sorting (quicksort)

GPU Reductions

• Again, see https://en.wikipedia.org/wiki/Reduction_Operator

• Commonly used in parallel programming to
reduce all elements of an array to single result.

• Supposed to be associative and often (but not
necessarily) commutative.

• Can be used in "Map Reduce" where reduction
operator is applied (mapped) to all elements
before they are reduced.

• Many reduction operators can be used for
broadcasting, to distribute data to all processors.

https://en.wikipedia.org/wiki/Reduction_Operator
https://en.wikipedia.org/wiki/Reduction_Operator

Properties of Reduction Operator

• Allows many serial operations to be performed in parallel, reducing
number of steps

• Helps break down full task into partial tasks. Calculates partial
results to obtain final result.

• Stores results of partial tasks into “private copies” of the variable.
– These private copies are then merged into a shared copy at the end.

• An operator is a reduction operator for example, if:
– It can reduce an array to a single scalar value. (eg, adding all elements

of array).
– The final result should be obtainable from the results of the partial

tasks that were created.

• Satisfied for commutative and associative operators that are
applied to all array elements.

• Some operators which satisfy these requirements are integer
addition, multiplication, and some logical operators (and, or, etc.).

MapReduce, more advanced…

• See https://en.wikipedia.org/wiki/MapReduce

• MapReduce is a framework for processing parallelizable problems across
large datasets using a large number of computers

• Usually composed of three steps:
• Map: each worker node applies the map function to the local data, and

writes the output to a temporary storage.
– A master node ensures that only one copy of the redundant input data

is processed.
• Shuffle: worker nodes redistribute data based on the output keys

– (produced by the map function), such that all data belonging to one
key is located on the same worker node.

• Reduce: worker nodes now process each group of output data, per key, in
parallel.

• MapReduce allows for distributed processing of the map /reduction
operations.

• Maps can be performed in parallel, when mapping operations are
independent

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce

Outline

• Examples of GPU-accelerable algorithms:

– Sum of array

– Prefix sum

– Stream compaction

– Sorting (quicksort)

Elementwise Integer Addition

• CPU code:
float *C = malloc(N * sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

 • GPU code:
// assign device and host memory pointers, and allocate memory
in host. Adds simultaneously across thread indices!

int thread_index = threadIdx.x + blockIdx.x * blockDim.x;

while (thread_index < N) {

 C[thread_index] = A[thread_index] + B[thread_index];

 thread_index += blockDim.x * gridDim.x;

}

Problem: C[i] = A[i] + B[i]

Simple Reduction Example

• GPU Pseudocode:
 // set up device and host memory pointers
 // create threads and get thread indices
 // assign each thread a specific region to sum over
 // wait for all threads to finish running (__syncthreads;)
 // combine all thread sums for final solution

• CPU code:
float sum = 0.0;

for (int i = 0; i < N; i++)

sum += A[i];

Problem: SUM(A[])

Naive Reduction

• Suppose we wished to accumulate our
results…

Naive Reduction

• Race conditions! Could load old value before
new one (from another thread) is written out

Thread-unsafe!

Naive (but correct) Reduction

• We could do a bunch of atomic adds to our
global accumulator…

Naive (but correct) Reduction

• But then we lose a lot of our parallelism 

Every thread needs
to wait…

Shared memory accumulation

• Right now, the only parallelism we get is
partial sums per thread

• Idea: store partial sums per thread in shared
memory

• If we do this, we can accumulate partial sums
per block in shared memory, and THEN
atomically add a much larger sum to the
global accumulator

Shared memory accumulation

Shared memory accumulation

Shared memory accumulation

• It doesn’t seem particularly efficient to have
one thread per block accumulate for the
entire block…

• Can we do better?

“Binary tree” reduction

Thread 0 atomicAdd’s
this to global result

“Binary tree” reduction

Use __syncthreads()
before proceeding!

“Binary tree” reduction

• Warp Divergence! Odd threads won’t even execute.

Non-divergent reduction

• Shared Memory Bank Conflicts!

– 2-way on 1st iteration, 4-way on 2nd iteration, …

Non-divergent reduction

Sequential addressing

• Automatically resolves bank conflicts!

Sum Reduction

• More improvements possible (gets crazy!)

– “Optimizing Parallel Reduction in CUDA” (Harris)

• Code examples!

• Moral:

– Different type of GPU-accelerated problems

• Some are “parallelizable” in a different sense

– More hardware considerations in play

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Outline

• GPU-accelerated:

– Sum of array

– Prefix sum – See
https://en.wikipedia.org/wiki/Prefix_sum

– Stream compaction

– Sorting (quicksort)

https://en.wikipedia.org/wiki/Prefix_sum
https://en.wikipedia.org/wiki/Prefix_sum

Prefix Sum

Prefix Sum

Prefix Sum

Prefix Sum

Prefix Sum sample code (up-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 26]

[1, 3, 3, 7, 5, 11, 7, 15]

[1, 2, 3, 4, 5, 6, 7, 8]

Original array

We want:

[0, 1, 3, 6, 10, 15, 21, 28]

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

for d = 0 to (log2n) -1 do
 for all k = 0 to n-1 by 2d+1 in parallel do
 x[k + 2d+1 – 1] = x[k + 2d -1] + x[k + 2d]

Prefix Sum sample code (down-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 0]

[1, 3, 3, 0, 5, 11, 7, 10]

[1, 0, 3, 3, 5, 10, 7, 21]

[0, 1, 3, 6, 10, 15, 21, 28]

Final result

Original: [1, 2, 3, 4, 5, 6, 7, 8]

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

x[n-1] = 0
for d = log2(n) – 1 down to 0 do
 for all k = 0 to n-1 by 2d+1 in parallel do
 t = x[k + 2d – 1]
 x[k + 2d – 1] = x[k + 2d]
 x[k + 2d] = t + x[k + 2d]

Prefix Sum (Up-Sweep)

Original
array

Use __syncthreads()
before proceeding!

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum (Down-Sweep)

Final
result

Use __syncthreads()
before proceeding!

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum

• Bank conflicts galore!

– 2-way, 4-way, …

Prefix Sum

• Bank conflicts!

– 2-way, 4-way, …

– Pad addresses!

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum

• https://developer.nvidia.com/gpugems/gpugems
3/part-vi-gpu-computing/chapter-39-parallel-
prefix-sum-scan-cuda -- See Link for a More In-
Depth Explanation of Up-Sweep and Down-
Sweep

• All of GPU Gems 3 available to download here!

• See also Ch8 of textbook (Kirk and Hwu) for a
more build-up and motivation for the up-sweep
and down-sweep algorithm (like we did for the
array sum)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Outline

• GPU-accelerated:

– Sum of array

– Prefix sum

– Stream compaction (to be used for
Quicksort!)

– Sorting (quicksort)

Stream Compaction

• Problem:

– Given array A, produce sub-array of A defined by
Boolean condition

– e.g. given array:

• Produce array of numbers > 3

– Will use for implementing Quicksort on GPUs!

2 5 1 4 6 3

5 4 6

Stream Compaction

• Given array A:

– GPU kernel 1: Evaluate boolean condition,

• Array M: 1 if true, 0 if false

– GPU kernel 2: Cumulative sum of M (denote S)

– GPU kernel 3: At each index,

• if M[idx] is 1, store A[idx] in output at position (S[idx] - 1)

2 5 1 4 6 3

0 1 0 1 1 0

0 1 1 2 3 3

5 4 6

Outline

• GPU-accelerated:

–Sum of array

–Prefix sum

–Stream compaction

–Sorting (quicksort)
• See https://en.wikipedia.org/wiki/Quicksort

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

GPU-accelerated quicksort

• Quicksort:

– Divide-and-conquer algorithm

– Partition array along chosen pivot point

• Pseudocode:
 quicksort(A, loIdx, hiIdx):

 if lo < hi:

 pIdx := partition(A, loIdx, hiIdx)

 quicksort(A, loIdx, pIdx - 1)

 quicksort(A, pIdx + 1, hiIdx)

Sequential
partition

GPU-accelerated partition

• Given array A:

– Choose pivot (e.g. 3)

– Stream compact on condition: ≤ 3

– Store pivot

– Stream compact on condition: > 3 (store with offset)

2 5 1 4 6 3

2 1

2 1 3

2 1 3 5 4 6

GPU acceleration details

• Synchronize between calls of the previous
algorithm

• Continued partitioning/synchronization on
sub-arrays results in sorted array

Final Thoughts

• “Less obviously parallelizable” problems

– Hardware matters! (synchronization, bank
conflicts, …)

• Resources:

– GPU Gems, Vol. 3, Ch. 39

– Highly Recommend Reading This Guide to CUDA
Optimization, with a Reduction Example

– Kirk and Hwu Chapters 7-12 for more parallel
algorithms

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

