> &
P.I
e

~N O
—
w O
O

N
Q
S
>
)
@
Q
—

Last Week

* Memory optimizations using different GPU
caches

* Atomic operations

* Synchronization with __ syncthreads()

This week, Week 3

More advanced GPU-accelerable algorithms

“Reductions” to parallelize problems that might
not seem intuitively parallelizable

— Not the same as reductions in complexity theory or
machine learning!

— Lots of technical meanings for “Reduction” — see
https://en.wikipedia.org/wiki/Reduction

See
https://en.wikipedia.org/wiki/Reduction Operator

https://en.wikipedia.org/wiki/Reduction
https://en.wikipedia.org/wiki/Reduction
https://en.wikipedia.org/wiki/Reduction_Operator
https://en.wikipedia.org/wiki/Reduction_Operator

This Lecture -- Outline

e Reductions for GPUs
 Examples of GPU-accelerable algorithms:

— (To be used in combination for Quicksort!)
— Sum of array

— Prefix sum

— Stream compaction

— Sorting (quicksort)

GPU Reductions

Again, see https://en.wikipedia.org/wiki/Reduction Operator

Commonly used in parallel programming to
reduce all elements of an array to single result.

Supposed to be associative and often (but not
necessarily) commutative.

Can be used in "Map Reduce" where reduction

operator is applied (mapped) to all elements
before they are reduced.

Many reduction operators can be used for
broadcasting, to distribute data to all processors.

https://en.wikipedia.org/wiki/Reduction_Operator
https://en.wikipedia.org/wiki/Reduction_Operator

Properties of Reduction Operator

Allows many serial operations to be performed in parallel, reducing
number of steps

Helps break down full task into partial tasks. Calculates partial
results to obtain final result.

Stores results of partial tasks into “private copies” of the variable.
— These private copies are then merged into a shared copy at the end.
An operator is a reduction operator for example, if:

— It can reduce an array to a single scalar value. (eg, adding all elements
of array).

— The final result should be obtainable from the results of the partial
tasks that were created.

Satisfied for commutative and associative operators that are
applied to all array elements.

Some operators which satisfy these requirements are integer
addition, multiplication, and some logical operators (and, or, etc.).

MapReduce, more advanced...

See https://en.wikipedia.org/wiki/MapReduce

MapReduce is a framework for processing parallelizable problems across
large datasets using a large number of computers

Usually composed of three steps:

Map: each worker node applies the map function to the local data, and
writes the output to a temporary storage.

— A master node ensures that only one copy of the redundant input data
is processed.

Shuffle: worker nodes redistribute data based on the output keys

— (produced by the map function), such that all data belonging to one
key is located on the same worker node.

Reduce: worker nodes now process each group of output data, per key, in
parallel.

MapReduce allows for distributed processing of the map /reduction
operations.

Maps can be performed in parallel, when mapping operations are
independent

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce

Outline

 Examples of GPU-accelerable algorithms:
— Sum of array

— Prefix sum
— Stream compaction
— Sorting (quicksort)

Elementwise Integer Addition
Problem: C|i] = A[i] + BJi]

e CPU code:

float *C = malloc(N * sizeof(float));
for (int i = 0; 1 < N; i++)
c[i]l] = A[1] + B[i];

e GPU code:

// assign device and host memory pointers, and allocate memory
in host. Adds simultaneously across thread indices!

int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
while (thread_index < N) {
C[thread_index] = A[thread_index] + B[thread_index];
thread_index += blockDim.x * gridDim.Xx;

Simple Reduction Example
Problem: SUM(A[])

e CPU code:

float sum = 0.0;
for (int i = 0; i < N; i++)
sum += A[i];

e GPU Pseudocode:

// set up device and host memory pointers

// create threads and get thread indices

// assign each thread a specific region to sum over

// wait for all threads to finish running (__syncthreads;)
// combine all thread sums for final solution

Naive Reduction

Suppose we wished to accumulate our
results...

global woid

cudaSum atomic kernel {const

1ed int polynomialOrder,

output) {

:x to initial thread index...

. partial sum =

while (inputIndex < numberOfInputs) {

calculate 1itIndex] and

f/fadd it

output += partial sum

Naive Reduction

e Race conditions! Could load old value before
new one (from another thread) is written out

:udaSum_atDmic_kernel{cﬂns: float* const inp

float* output) {

inputIndex to initial thread index...

float partial sum =

while (inputIndex < numberOfInputs) {

Thread-unsafe!

Naive (but correct) Reduction

e We could do a bunch of atomic adds to our
global accumulator...

__global__ wr

cudaSum_aton 12£ £loat#* ¢ st inputs,
unsigned int numberCfInputs,
const float*

.* putput)

tIndex to 1nitial thread index...

. partial sum =
while (inputIndex numberCfInputs) {

ynomial walue

rtial sum...

atomickdd (coutput, partial sum) ;

Naive (but correct) Reduction

* But then we lose a lot of our parallelism ®

__global__ woid

cudaSum atomic kernel {(const float* st inputs,

signed i1nt numberCfInputs,

it £loat* const c,

dex to initial thread index...

. partial sum
while (inputIndex numberCfInputs) {

1omial walue

partial sum...

. index

Every thread needs
to wait...

atomickdd (coutput, partial sum) ;

Shared memory accumulation

* Right now, the only parallelism we get is

nartial sums per thread

e |dea: store partial sums per thread in shared
memory

* |f we do this, we can accumulate partial sums

per block in shared memory, and THEN
atomically add a much larger sum to the

global accumulator

Shared memory accumulation

__global wvoid

cudaSum linear kernel (con=t float* const inputs,

unsigned int numberOfInputs,
conzst £loat* con=t c,
un=zigned int polynomialOrder,

float * output) {

extern shared float partial outputs[];

Shared memory accumulation

other threads in

(threadIdx.x =) {

for (un=signed int threadIndex : threadIndex < blockDim.x;

++threadIndex) {

r partial sum= into thread

Shared memory accumulation

* |t doesn’t seem particularly efficient to have
one thread per block accumulate for the
entire block...

e Can we do better?

“Binary tree” reduction
Values (shared memory) [10] 1 [8 [-1] 0 [-2] 3]s [-2]3]2] 7o n[o]2

sl e @Y @Y @ ¢ @ @ @ @
Values |11 1 |7 |4 |2]|2|8[5|5[3]9]7[n|n|2]|2

Step 2 Thread
Stride 2 IDs

Step 3 Thread
Stride 4 IDs

Values |24 | 1 |7 |4 |6 |2|8[s|m][3]9]7]1|1]2]|2
L. —

Step 4
Stride 8

Values [41] 1 | 7 [1 |6 |28 |5[17]-a]9 7 [13]11]2]2]

Thread 0 atomicAdd’s
this to global result

“Binary tree” reduction

Values (shared memory) [10] 1 | 8 [-1 |0 2|3]s|-2|3]2]7 0[]0]|2]

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

R K K
Values [11[1 [7 [-1]2[2]8[5]5]3]0|7[1[11]2]2]
Thead © @ ® 42

Values 18| 1 |7 |16 |28 |5]4|-a]9 7 |13]1]2]2]

Thread 0 @
IDs
Values &nnnunnnnmnun
Thread 0
IDs
Values _ﬂnﬂﬂﬂﬂﬂﬂmnﬂﬂ

Use _ syncthreads()
before proceeding!

“Binary tree” reduction
Values (shared memory) [10] 1 [8 [-1] 0 [-2] 3]s [-2]3]2] 7o n[o]2

sl e @Y @Y @ ¢ @ @ @ @
Values |11 1 |7 |4 |2]|2|8[5|5[3]9]7[n|n|2]|2

Step 2 Thread
Stride 2 IDs

Step 3 Thread
Stride 4 IDs

Values |24 | 1 |7 |4 |6 |2|8[s|m][3]9]7]1|1]2]|2
L. —

Step 4
Stride 8

Values [41] 1 | 7 [|6 |28 |5[17]-a]9 7 [13]11]2]2]

 Warp Divergence! Odd threads won’t even execute.

Non-divergent reduction
Values (shared memory)[10] 1 [& [1[0]2 35 [2] 527 o[o]z

S e 97 @7 @7 97 @7 ¢ ¢ ¢

Values ---ﬂﬂﬂﬂﬂ-ﬂ---

Step 2 Thread
Stride 2 IDs

Values

Step 3 Thread

Stride 4
vatues [2e] 1 [7 [s [2] s [s[w]s]e 7 w[n]z]z
Step 4 Thread —

Stride 8 IDs

Values |41 1 |7 |1]6 2|8 5]17]-a]o 7 |1]t1]2]2]

Non-divergent reduction
Values (shared memory)[10] 1 [& [1[0]2 35 [2] 527 o[o]z

0"‘@‘9“-‘"@‘@‘9
Values IIIHHHHHIHI-I

Step 2 Thread
Stride 2 IDs

Values

Step 3 Thread

Stride 4

Values |24 | 1 |7 |-1]6 |28 517|390 |7 |18]11)2)2]
Step 4 Thread —
Stride 8 IDs

vaiues [s1]7 [7 [e |25 [s [w]s]o 7 [w]n]2]2
* Shared Memory Bank Conflicts!
— 2-way on 1stiteration, 4-way on 2" iteration, ...

Sequential addressing

Values (shared memory) [10] + [o [+ [0 2] 3]s]2[2]2]7]o o]z

Step 1
Stride 8

Step 3
Stride 2

Step 4
Stride 1

-!---—W

Values numnnnn-nnnnmnn

Thread
IDs

Values [8 | 7 [13[13] 0|9 |3|7]-2]|-3|2 |70 1[0]2
TI'Illr:')esad OE)’
Values [21[20[13[13[0937 2|3]2 7 0 1o |2]

Thread
IDs o

Values (4120 [13[13] 0 [9 |3 [7]-2]|3[2]7 0 |1]o]2]

Automatically resolves bank conflicts!

Sum Reduction

* More improvements possible (gets crazy!)
— “Optimizing Parallel Reduction in CUDA” (Harris)

* Code examples!

* Moral:
— Different type of GPU-accelerated problems

 Some are “parallelizable” in a different sense

— More hardware considerationsin play

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Outline

e GPU-accelerated:

— Sum of array

— Prefix sum — See
https://en.wikipedia.org/wiki/Prefix_sum

— Stream compaction
— Sorting (quicksort)

https://en.wikipedia.org/wiki/Prefix_sum
https://en.wikipedia.org/wiki/Prefix_sum

Prefix Sum

Given input sequence x[n], produce sequence

n—1

ylnl =) x[k]

k=0

—e.g.x[n]=(2,1,1,1,1,1,1)
-> V[n] - (01 1.! 2r 31 4; 5: 6)

—e.g.x[n] =(1, 2, 3, 4, 5, 6)
>y[n]=(0, 1, 3, 6, 10, 15)

Prefix Sum

* Given input sequence x[n], produce sequence

n—1

ylnl =) x[k]

k=0

—e.g.x[n] =(1, 2, 3, 4,5, 6)
->vy[n] =(0, 1, 3, 6, 10, 15)

* Recurrence relation:
yln] = yln — 1] + x[n]

Prefix Sum

e Recurrence relation:
y[n] = y[n — 1] + x[n]

— Is it parallelizable? Is it GPU-accelerable?

e Recall:
— yln]=x[n]+xIn—-1]+ -+ x[n— (K —1)]
» Easily parallelizable!

- y[nl=c-x[n]+ (A -c)-y[ln—1]
» Not so much

Prefix Sum

e Recurrence relation:
y[n] = y[n — 1] + x[n]

— |s it parallelizable? Is it GPU-accelerable?

e Goal:

— Parallelize using a “reduction-like” strategy

Prefix Sum sample code (up-sweep)

14y 2 2 188} 5 AL, 7, 216

1,3, 3,10,5,11, 7, 26]

[1I 2) 3) 4) 5) 6) 7) 8]

ford=0to (log,n) -1 do
for all k =0 to n-1 by 291 in parallel do
X[k + 29*1 — 1] = x[k + 29 -1] + x[k + 2]

We want:
0,1, 3, 6,10, 15, 21, 28]

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum sample code (down-sweep)

Original: [1, 2, 3,4, 5, 6, 7, 8]

1,3, 3,10, 5, 11, 7, 36]
[1,3,3,10,5, 11,7, O]

[11 3) 3) 5) 11) 7)]

X[n-1] =
for d = log,(n) — 1 down to 0 do [1, 0, 3, 5, 7, 21]
for all k =0 to n-1 by 29+1 in parallel do
t=x[k + 29 —1] Final result
x[k + 29— 1] = x[k + 29] 0,1, 3, 6,10, 15, 21, 28]

x[k + 29] = t + x[k + 24]

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum (Up-Sweep)

Use _ syncthreads()
before proceeding!

o - | ESEAEIENENR

array

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum (Down-Sweep)

Use _ syncthreads()
before proceeding!

result

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum

* Bank conflicts galore!

— 2-way, 4-way, ...

Prefix Sum

e Bank conflicts!

— 2-way, 4-way, ...

— Pad addresses!

affsat= 1: Padding addresses every 1€ glements removes bank conflicts

Padding increment:

(University of Michigan EECS,
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

Prefix Sum

https://developer.nvidia.com/gpugems/gpugems

3/part-vi-gpu-computing/chapter-39-parallel-

prefix-sum-scan-cuda -- See Link for a More In-

Depth Explanation of Up-Sweep and Down-
Sweep

All of GPU Gems 3 available to download here!

See also Ch8 of textbook (Kirk and Hwu) for a
more build-up and motivation for the up-sweep
and down-sweep algorithm (like we did for the
array sum)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Outline

e GPU-accelerated:
— Sum of array

— Prefix sum

— Stream compaction (to be used for
Quicksort!)

— Sorting (quicksort)

Stream Compaction

* Problem:

— Given array A, produce sub-array of A defined by
Boolean condition

— e.g. given array:

* Produce array of numbers > 3

— Will use for implementing Quicksort on GPUs!

Stream Compaction

* Given array A:

— GPU kernel 1: Evaluate boolean condition,
* Array M: 1 if true, O if false

0 1 0 1 1 0

— GPU kernel 2: Cumulative sum of M (denote S)

— GPU kernel 3: At each index,
e if M[idx] is 1, store A[idx] in output at position (S[idx] - 1)

Outline

* GPU-accelerated:
—Sum of array
—Prefix sum
—Stream compaction
—Sorting (quicksort)

* See https://en.wikipedia.org/wiki/Quicksort

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

GPU-accelerated quicksort

e Quicksort:
— Divide-and-conquer algorithm
. L . . Sequential
— Partition array along chosen pivot point vartition

317/8[5]2]1]9]54]
e Pseudocode:
quicksort(A, loIdx, hiIdx): Eﬂ

if 1o < hi:

pIdx := partition(A, ToIdx, hiIdx) En

quicksort(A, loIdx, pIdx - 1)

quicksort(A, pIdx + 1, hiIdx) EE
HOEBEEEER

GPU-accelerated partition

* Given array A:

— Choose pivot (e.g. 3)
— Stream compact on condition: <3

— Store pivot

— Stream compact on condition: >3 (store with offset)

GPU acceleration details

* Synchronize between calls of the previous
algorithm

* Continued partitioning/synchronization on
sub-arrays results in sorted array

Final Thoughts

e “Less obviously parallelizable” problems

— Hardware matters! (synchronization, bank
conflicts, ...)

e Resources:
— GPU Gems, Vol. 3, Ch. 39

— Highly Recommend Reading This Guide to CUDA
Optimization, with a Reduction Example

— Kirk and Hwu Chapters 7-12 for more parallel
algorithms

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

