

Last Week

- Memory optimizations using different GPU caches
- Atomic operations
- Synchronization with __syncthreads()

This week, Week 3

- More advanced GPU-accelerable algorithms
- "Reductions" to parallelize problems that might not seem intuitively parallelizable
 - Not the same as reductions in complexity theory or machine learning!
 - Lots of technical meanings for "Reduction" see
 https://en.wikipedia.org/wiki/Reduction
- See
 https://en.wikipedia.org/wiki/Reduction Operator

This Lecture -- Outline

- Reductions for GPUs
- Examples of GPU-accelerable algorithms:
 - (To be used in combination for Quicksort!)
 - Sum of array
 - Prefix sum
 - Stream compaction
 - Sorting (quicksort)

GPU Reductions

- Again, see https://en.wikipedia.org/wiki/Reduction Operator
- Commonly used in parallel programming to reduce all elements of an array to single result.
- Supposed to be associative and often (but not necessarily) commutative.
- Can be used in "Map Reduce" where reduction operator is applied (mapped) to all elements before they are reduced.
- Many reduction operators can be used for broadcasting, to distribute data to all processors.

Properties of Reduction Operator

- Allows many serial operations to be performed in parallel, reducing number of steps
- Helps break down full task into partial tasks. Calculates partial results to obtain final result.
- Stores results of partial tasks into "private copies" of the variable.
 - These private copies are then merged into a shared copy at the end.
- An operator is a reduction operator for example, if:
 - It can reduce an array to a single scalar value. (eg, adding all elements of array).
 - The final result should be obtainable from the results of the partial tasks that were created.
- Satisfied for commutative and associative operators that are applied to all array elements.
- Some operators which satisfy these requirements are integer addition, multiplication, and some logical operators (and, or, etc.).

MapReduce, more advanced...

- See https://en.wikipedia.org/wiki/MapReduce
- MapReduce is a framework for processing parallelizable problems across large datasets using a large number of computers
- Usually composed of three steps:
- <u>Map</u>: each worker node applies the map function to the local data, and writes the output to a temporary storage.
 - A master node ensures that only one copy of the redundant input data is processed.
- **Shuffle**: worker nodes redistribute data based on the output keys
 - (produced by the map function), such that all data belonging to one key is located on the same worker node.
- <u>Reduce</u>: worker nodes now process each group of output data, per key, in parallel.
- MapReduce allows for distributed processing of the map /reduction operations.
- Maps can be performed in parallel, when mapping operations are independent

Outline

- Examples of GPU-accelerable algorithms:
 - Sum of array
 - Prefix sum
 - Stream compaction
 - Sorting (quicksort)

Elementwise Integer Addition

Problem: C[i] = A[i] + B[i]

CPU code:

```
float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)
    C[i] = A[i] + B[i];</pre>
```

• GPU code:

```
// assign device and host memory pointers, and allocate memory
in host. Adds simultaneously across thread indices!

int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
while (thread_index < N) {
    C[thread_index] = A[thread_index] + B[thread_index];
    thread_index += blockDim.x * gridDim.x;</pre>
```

Simple Reduction Example Problem: SUM(A[])

CPU code:

```
float sum = 0.0;
for (int i = 0; i < N; i++)
    sum += A[i];</pre>
```

GPU Pseudocode:

```
// set up device and host memory pointers
// create threads and get thread indices
// assign each thread a specific region to sum over
// wait for all threads to finish running ( __syncthreads; )
// combine all thread sums for final solution
```

Naive Reduction

Suppose we wished to accumulate our results...

```
cudaSum atomic kernel(const float* const inputs,
                                      unsigned int numberOfInputs,
                                      const float* const c,
                                      unsigned int polynomialOrder,
                                      float* output) {
    //set inputIndex to initial thread index...
    float partial sum = 0.0;
    while (inputIndex < numberOfInputs) {</pre>
        //calculate polynomial value at inputs[inputIndex] and
        //add it to the partial sum...
        //increment input index to the next value...
    output += partial sum
```

Naive Reduction

 Race conditions! Could load old value before new one (from another thread) is written out

```
global void
cudaSum atomic kernel(const float* const inputs,
                                     unsigned int numberOfInputs,
                                     const float* const c,
                                     unsigned int polynomialOrder,
                                     float* output) {
   //set inputIndex to initial thread index...
   float partial sum = 0.0;
   while (inputIndex < numberOfInputs) {</pre>
       //calculate polynomial value at inputs[inputIndex] and
       //add it to the partial sum...
       //increment input index to the next value...
   output += partial sum
                               Thread-unsafe!
```

Naive (but correct) Reduction

 We could do a bunch of atomic adds to our global accumulator...

```
global void
cudaSum atomic kernel(const float* const inputs,
                                      unsigned int numberOfInputs,
                                      const float* const c,
                                      unsigned int polynomialOrder,
                                      float* output) {
   //set inputIndex to initial thread index...
    float partial sum = 0.0;
    while (inputIndex < numberOfInputs) {</pre>
       //calculate polynomial value at inputs[inputIndex] and
       //add it to the partial sum...
        //increment input index to the next value...
   atomicAdd(output, partial sum);
```

Naive (but correct) Reduction

But then we lose a lot of our parallelism

```
global void
cudaSum atomic kernel(const float* const inputs,
                                     unsigned int numberOfInputs,
                                     const float* const c,
                                     unsigned int polynomialOrder,
                                     float* output) {
   //set inputIndex to initial thread index...
   float partial sum = 0.0;
   while (inputIndex < numberOfInputs) {</pre>
       //calculate polynomial value at inputs[inputIndex] and
       //add it to the partial sum...
       //increment input index to the next value...
                                        Every thread needs
   atomicAdd(output, partial sum);
                                        to wait...
```

- Right now, the only parallelism we get is partial sums per thread
- Idea: store partial sums per thread in shared memory
- If we do this, we can accumulate partial sums per block in shared memory, and THEN atomically add a much larger sum to the global accumulator

```
global void
cudaSum linear kernel (const float* const inputs,
                                 unsigned int numberOfInputs,
                                 const float* const c,
                                 unsigned int polynomialOrder,
                                 float * output) {
   extern shared float partial outputs[];
   //calculate partial sum as before...
   //but this time, store the result in the partial outputs[threadIndex]...
   //Make all threads in the block finish before continuing!
   syncthreads();
```

```
//Use the first thread in the block to accumulate the results
//of the other threads in said block
if (threadIdx.x == 0) {
    for (unsigned int threadIndex = 1; threadIndex < blockDim.x;</pre>
            ++threadIndex) {
        //Accumulate all the other partial sums into thread 0's
        //partial sum
        partial sum += partial outputs[threadIndex];
    //Now we finally accumulate
    atomicAdd(output, partial sum);
```

- It doesn't seem particularly efficient to have one thread per block accumulate for the entire block...
- Can we do better?

"Binary tree" reduction

Thread 0 atomicAdd's this to global result

"Binary tree" reduction

Use __syncthreads() before proceeding!

"Binary tree" reduction

Warp Divergence! Odd threads won't even execute.

Non-divergent reduction

Non-divergent reduction

- Shared Memory Bank Conflicts!
 - 2-way on 1st iteration, 4-way on 2nd iteration, ...

Sequential addressing

Automatically resolves bank conflicts!

Sum Reduction

- More improvements possible (gets crazy!)
 - "Optimizing Parallel Reduction in CUDA" (Harris)
 - Code examples!

- Moral:
 - Different type of GPU-accelerated problems
 - Some are "parallelizable" in a different sense
 - More hardware considerations in play

Outline

- GPU-accelerated:
 - Sum of array
 - Prefix sum See
 https://en.wikipedia.org/wiki/Prefix_sum
 - Stream compaction
 - Sorting (quicksort)

Given input sequence x[n], produce sequence

$$y[n] = \sum_{k=0}^{n-1} x[k]$$

- e.g.
$$x[n] = (1, 1, 1, 1, 1, 1, 1, 1)$$

-> $y[n] = (0, 1, 2, 3, 4, 5, 6)$

- e.g.
$$x[n] = (1, 2, 3, 4, 5, 6)$$

-> $y[n] = (0, 1, 3, 6, 10, 15)$

Given input sequence x[n], produce sequence

$$y[n] = \sum_{k=0}^{n-1} x[k]$$

- e.g.
$$x[n] = (1, 2, 3, 4, 5, 6)$$

-> $y[n] = (0, 1, 3, 6, 10, 15)$

Recurrence relation:

$$y[n] = y[n-1] + x[n]$$

Recurrence relation:

$$y[n] = y[n-1] + x[n]$$

— Is it parallelizable? Is it GPU-accelerable?

Recall:

- $-y[n] = x[n] + x[n-1] + \dots + x[n-(K-1)]$
 - » Easily parallelizable!
- $y[n] = c \cdot x[n] + (1 c) \cdot y[n 1]$
 - » Not so much

Recurrence relation:

$$y[n] = y[n-1] + x[n]$$

— Is it parallelizable? Is it GPU-accelerable?

- Goal:
 - Parallelize using a "reduction-like" strategy

Prefix Sum sample code (up-sweep)

for d = 0 to (log₂n) -1 do
for all k = 0 to n-1 by
$$2^{d+1}$$
 in parallel do
 $x[k + 2^{d+1} - 1] = x[k + 2^d - 1] + x[k + 2^d]$

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 26]

[1, 3, 3, 7, 5, 11, 7, 15]

Original array

[1, 2, 3, 4, 5, 6, 7, 8]

We want:

[0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum sample code (down-sweep)

$$x[n-1] = 0$$

for $d = log_2(n) - 1$ down to 0 do
for all $k = 0$ to n-1 by 2^d+1 in parallel do
 $t = x[k + 2^d - 1]$
 $x[k + 2^d - 1] = x[k + 2^d]$
 $x[k + 2^d] = t + x[k + 2^d]$

Original: [1, 2, 3, 4, 5, 6, 7, 8]

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, **0**]

[1, 3, 3, 0, 5, 11, 7, 10]

[1, 0, 3, 3, 5, 10, 7, 21]

Final result

[0, 1, 3, 6, 10, 15, 21, 28]

Prefix Sum (Up-Sweep)

Use __syncthreads() before proceeding!

Prefix Sum (Down-Sweep)

Use __syncthreads() before proceeding!

- Bank conflicts galore!
 - 2-way, 4-way, ...

- Bank conflicts!
 - 2-way, 4-way, ...
 - Pad addresses!

- https://developer.nvidia.com/gpugems/gpugems
 3/part-vi-gpu-computing/chapter-39-parallelprefix-sum-scan-cuda
 See Link for a More In-Depth Explanation of Up-Sweep and Down-Sweep
- All of GPU Gems 3 available to download here!
- See also Ch8 of textbook (Kirk and Hwu) for a more build-up and motivation for the up-sweep and down-sweep algorithm (like we did for the array sum)

Outline

- GPU-accelerated:
 - Sum of array
 - Prefix sum
 - <u>Stream compaction</u> (to be used for Quicksort!)
 - Sorting (quicksort)

Stream Compaction

- Problem:
 - Given array A, produce sub-array of A defined by Boolean condition

– e.g. given array:

Produce array of numbers > 3

Will use for implementing Quicksort on GPUs!

Stream Compaction

Given array A:

- GPU kernel 1: Evaluate boolean condition,
 - Array M: 1 if true, 0 if false

– GPU kernel 2: Cumulative sum of M (denote S)

|--|

- GPU kernel 3: At each index,
 - if M[idx] is 1, store A[idx] in output at position (S[idx] 1)

5	4	6

Outline

- GPU-accelerated:
 - -Sum of array
 - -Prefix sum
 - –Stream compaction
 - -Sorting (quicksort)
 - See https://en.wikipedia.org/wiki/Quicksort

GPU-accelerated quicksort

- Quicksort:
 - Divide-and-conquer algorithm
 - Partition array along chosen pivot point

Sequential partition

• Pseudocode:

```
quicksort(A, loIdx, hiIdx):
   if lo < hi:
      pIdx := partition(A, loIdx, hiIdx)
      quicksort(A, loIdx, pIdx - 1)
      quicksort(A, pIdx + 1, hiIdx)</pre>
```


GPU-accelerated partition

Given array A:

- Choose pivot (e.g. 3)
- Stream compact on condition: ≤ 3

Store pivot

— Stream compact on condition: > 3 (store with offset)

2 1 3	5	4	6
-------	---	---	---

GPU acceleration details

- Synchronize between calls of the previous algorithm
- Continued partitioning/synchronization on sub-arrays results in sorted array

Final Thoughts

- "Less obviously parallelizable" problems
 - Hardware matters! (synchronization, bank conflicts, ...)
- Resources:
 - GPU Gems, Vol. 3, Ch. 39
 - Highly Recommend Reading <u>This</u> Guide to CUDA Optimization, with a Reduction Example
 - Kirk and Hwu Chapters 7-12 for more parallel algorithms