Recap

- Device (GPU) runs CUDA kernel defined in .cu and .cuh files
 - C++ code with a few extensions
 - Compiled with proprietary NVCC compiler
 - Kernel defines the behavior of each GPU thread

- Program control flow managed by host (CPU)
 - Uses CUDA API calls to allocate GPU memory, and copy input data from host RAM to device RAM
 - In charge of calling kernel - (almost) like any other function
 - Must also copy output data back from device to host
 - Executable is ultimately C++ program compiled by G++
 - Doesn’t treat object files (.o) produced by NVCC any differently
Recap

- GPU hardware abstraction consists of a *grid of blocks of threads*
 - Grid and blocks can have up to three dimensions
 - Each block assigned to an independent *streaming multiprocessor (SM)*
 - SM divides blocks into *warps* of 32 threads
 - All threads in a warp execute the same instruction concurrently
 - *Warp divergence* occurs when threads must wait to execute different instructions
 - GPUs are slow - waiting adds up fast!

- *Parallelizable* problems can be broken into independent components
 - Want to assign one thread per “thing that needs to get done”
 - Even better if threads in a warp don’t diverge
Parallelizable Problems

- Most obvious example is adding two linear arrays
 - CPU code:
    ```c
    void addVecs(float *a, float *b, float *c, unsigned length) {
      for (unsigned i = 0; i < length; i++)
        c[i] = a[i] + b[i];
    }
    ```
 - Need to allocate a, b, c and populate a, b beforehand
 - (But you should know how to do that)

- Why is this parallelizable?
 - For i ≠ j, operations for c[i] and c[j] don’t have any interdependence
 - Could happen in any order
 - Thus we can do them all at the same time (!) with the right hardware
Non-Parallelizable Problems

- Potentially harder to recognize
- Consider computing a moving average
 - Input array x of n data points
 - Output array y of n averages
 - Two well-known options:
 - Simple
 - Exponential
- Simple method just weights all data points so far equally
 - CPU code:
 - Parallelizable? Yes!
 - $y[i]$ values separate
Non-Parallelizable Problems

- What about an exponential moving average?
 - Uses a recurrence relation to decay point weight by a factor of $0 < 1 - c < 1$
 - Specifically, $y[i] = c \cdot x[i] + (1 - c) \cdot y[i - 1]$
 - Thus $y[n] = c \cdot (x[n] + (1 - c) \cdot x[n - 1] + ... + (1 - c)^{n-1} \cdot x[1]) + (1 - c)^n \cdot x[0]$
 - CPU code:
    ```c
    void exponentialMovingAverage(float *x, float *y, unsigned n, float c) {
        y[0] = x[0];
        for (unsigned i = 1; i < n; i++)
            y[i] = c * x[i] + (1 - c) * y[i - 1];
    }
    ```
 - Parallelizable? Nope
 - Need to know $y[i]$ before calculating $y[i + 1]$
What Have We Learned?

- Not all problems are parallelizable
 - Even similar-looking ones
- Harnessing the GPU’s power requires algorithms whose computations can be done at the same time
 - “Parallel execution”
 - Opposite would be “serial execution,” CPU-style
- Output elements should probably not rely on one another
 - Would require multiple kernel calls to compute otherwise
 - Different blocks of threads can’t wait for each other, more on that later in the course
 - In addition to all the extra instructions, there’s a lot of overhead
Assignment 1: Small-Kernel Convolution

- First assignment involves manipulating an input signal
 - In particular, a WAV (.wav) audio file
 - We provide an example to test with
 - Using audio will require libsndfile
 - Installation instructions included in assignment
 - Code also includes an option to use random data instead

- C++ and CUDA files provided, your job to fill in TODOs
 - Code already includes CPU implementation of desired algorithm
 - Your job is to write the equivalent CUDA kernel to parallelize it
 - You’re also in charge of memory allocation and host-device data transfers

- Conceptually straightforward, goal is familiarity with integrating CUDA into C++
Some Background on Signals

- A system takes input signal(s), produces output signal(s)
- A signal can be a continuous or discrete stream of data
 - Typically characterized by amplitude
 - E.g. continuous acoustic input to a microphone
- A continuous signal can also be discretized
 - Simply sample it at discrete intervals
 - Ideally periodic in nature
 - E.g. voltage waveform microphone output
- We will consider discrete signals
 - Assignment uses two-channel audio
Linear Systems

- Suppose some system takes input signal $x_i[n]$ and produces output signal $y_i[n]$
 - We denote this as $x_i[n] \rightarrow y_i[n]$
- If the system is **linear**, then for constants a, b we have:
 - $a \cdot x_1[n] + b \cdot x_2[n] \rightarrow a \cdot y_1[n] + b \cdot y_2[n]$
- Now suppose we want to pick out a single point in the signal
 - We can do this with a *delta function*, δ
 - If we treat it as a discrete signal, we can define it as:
 - $\delta [n - k] = 1$ if $n = k$, $\delta [n - k] = 0$ if $n \neq k$
 - “Zero everywhere with a spike at k”
- This definition means that $x[k] = x[n] \cdot \delta [n - k]$
 - **Note:** I was wrong about this in recitation. We use the delta function to pick out the value of signal $x[n]$ at constant point k.
Linear Systems

- Next we can define a system’s response to $\delta[n - k]$ as $h_k[n]$.
 - i.e. $\delta[n - k] \rightarrow h_k[n]$.

- From linearity we then have $x[n] \cdot \delta[n - k] \rightarrow x[n] \cdot h_k[n]$.
 - $x[n]$ is the input signal, $\delta[n - k]$ is the delta function signal.
 - **Note:** I was wrong about this in recitation; see the previous slide for details.
 - Response at time k defined by response to delta function.
Time-Invariance

- If a system is *time-invariant*, then it will satisfy:
 - $x[n] \rightarrow y[n] \Rightarrow x[n + m] \rightarrow y[n + m]$ for integer m

- Thus given $\delta[n - k] \rightarrow h_k[n]$ and $\delta[n - l] \rightarrow h_l[n]$, we can say that $h_k[n]$ and $h_l[n]$ are “time-shifted” versions of each other
 - Instead of a new response $h_k[n]$ for each k, we can define $h[n]$ such that $\delta[n] \rightarrow h[n]$, and shift h with k such that $\delta[n - k] \rightarrow h[n - k]$
 - By linearity, we then have $x[n] \cdot \delta[n - k] \rightarrow x[n] \cdot h_k[n]$

- This lets us rewrite the system’s response $x[n] \rightarrow y[n]$:
 - $x[n] = \sum x[k] \cdot \delta[n - k] \rightarrow \sum x[k] \cdot h_k[n - k] = x[k] \cdot h_k[n] = y[n]$
 - Output must be equivalent to $y[n]$ because $x[n] \rightarrow y[n]$
 - **Note:** sum is over all k.
What Have We Learned?

- *Linear time-invariant* systems have some very convenient properties:
 - Most importantly, they can be characterized entirely by $h[n]$
 - This allows $y[n]$ to be written entirely in terms of the input samples $x[k]$ and the delta function response $h[n]$

- Remember:
 - $y[n] = \sum x[k] \cdot h_k[n - k]$
 - $x[n]$ is the input signal to our system
 - $y[n]$ is the output signal, or “impulse response” from our system
 - $\delta[n]$ is the delta function signal
 - $h[n]$ is the impulse response from our system for $\delta[n]$
Putting It All Together

- Assignment asks you to accelerate convolution of an input signal
 - E.g. input x[0..99], system with h[0..3] delta function response
 - For finite-duration h such as this, computable with \(y[n] = \sum x[k] \cdot h[n - k] \)
 - \(y[50] \) computation, for example, would be:
 - All other h terms are 0
 - Here \(y[50] \) etc. refer to the signal at that point

- This sum is parallelizable
 - Pseudocode:
    ```
    SET ALL y[i] TO 0
    FOR (i FROM 0 THROUGH x.length - 1)
        FOR (j FROM 0 THROUGH h.length - 1)
            y[i] += x[i - j] * h[j]
    ```
Assignment Details

- All you need to worry about is the kernel and memory operations
- We provide the skeleton and some useful tools
 - CPU implementation - reference this for your GPU version
 - Error checking code for your output
 - Delta function response $h[n]$ (default is Gaussian impulse response)
 - Note: I was wrong in the recitation, saying that $h[n]$ is the response to any function we wish to convolve. Rather, the system is defined such that its response to the delta function is the signal we to convolve.
 - This derivation is a discrete-time version of https://en.wikipedia.org/wiki/LTI_system_theory#Impulse_response_and_convolution. Looking at this will help distinguish when we refer to the signal as a function and when we refer to a specific point in it.
Assignment Details

- Code can be compiled in one of two modes
 - Normal mode (\texttt{AUDIO_ON} defined to be 0)
 - Generates random $x[n]$
 - Can test performance on various input lengths
 - Can run repeated trials by increasing number of channels
 - Audio mode (\texttt{AUDIO_ON} defined to be 1)
 - Reads $x[n]$ from input WAV file
 - Generates output WAV from $y[n]$
 - Gaussian $h[n]$ is an (imperfect) low-pass filter - high frequencies should be attenuated
Debugging Tips

- **printf()** can be useful, but gets messy if all threads print
 - Better to only print from certain threads, though your kernel will diverge
- If you want to check your kernel’s output, copy it back to the host
 - More manageable than printing from the kernel and you can write normal C++ to inspect the data
- Use the **gpuErrchk()** macro to check CUDA API calls for errors
 - Example usage: `gpuErrchk(cudaMalloc(&dev_in, length * sizeof (int)));`
 - Prints error info to stderr and exits
- Use small convolution test cases before trying large arrays or the test WAV
 - E.g. 5-element $x[n]$, 3-element $h[n]$
Any Questions?