CS 177 - Fall 2010

Homework 2: Smoothing

1 Minimizing the Area of a Discrete Surface

1.1 A Few Identities

1.1.1 Law of Sines

Let A, B, C and a, b, c be the angles and the side lengths of a triangle, respectively. Additionally, let r be the radius of the triangle's circumcircle. Show that the so-called law of sines holds, namely

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 r .
$$

(Hint: use the fact that an inscribed angle equals half of its intercepted arc.)

1.1.2 Pythagorean Theorem

Briefly explain how the following figure justifies the Pythagorean theorem.

1.1.3 Cotangent

Give a simple geometric argument for the Pythagorean identity

$$
\sin ^{2} \alpha+\cos ^{2} \alpha=1
$$

and use it to show that the following trigonometric identity holds:

$$
\cot \alpha=\frac{\sqrt{1-\sin ^{2} \alpha}}{\sin \alpha} .
$$

1.2 Length of a Dual Edge

Consider a pair of triangles sharing a common edge. Connecting the circumcenters of these triangles yields the circumcentric dual edge. Show that the dual edge is orthogonal to the primal (i.e., original) edge and has (signed) length

$$
\frac{1}{2}(\cot \alpha+\cot \beta) l
$$

where α and β are the angles opposite the primal edge and l is the length of the primal edge.
(Hint: use your results from above!)

1.3 Gradient of Triangle Area

Let p be the vertex of a triangle and let \mathbf{u} be the vector along its opposing edge. Argue geometrically that the gradient of the area of this triangle with respect to p is given by

$$
\nabla_{p} A=\frac{1}{2} \mathbf{u}^{\perp}
$$

where \mathbf{u}^{\perp} is the edge vector rotated by an angle $\pi / 2$ in the plane of the triangle such that it points toward p. (Hint: this was done in class!)

1.4 Cotangents

Now re-express the area gradient as a linear sum of cotangents and edges. And conclude that:

$$
\nabla_{p} A=\frac{1}{4} \sum_{i}\left(\cot \alpha_{i}+\cot \beta_{i}\right)\left(p-q_{i}\right) .
$$

Can you deduce an expression for the area of a triangle only as a function of edge length and cotangent of angles?

2 Curvature Flow

The curvature derived in the previous section can be used to remove noise from a discrete surface. The basic idea is to push vertices against the direction of the mean curvature normal. Hence, where curvature is large the surface will quickly flatten out, and regions that are already flat will stay flat. In this assignment you will implement mean curvature flow in MATLAB. You may find it very helpful to look at the paper Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow by Desbrun et al.

If you do not have access to MATLAB, you can also use GNU Octave, which is a freely available alternative. However, you may find that Octave is too slow to run some of the larger example meshes.

2.1 Mesh I/O

Polygonal surfaces are often stored in a simple text format that specifies vertex positions in terms of their (x, y, z) coordinates and faces as a list of vertex indices (called the Wavefront OBJ format, or simply OBJ). An example mesh and its specification are shown below.

v 000
v 100
v 110
v 010
f 134
f 123
Your ability to read and write mesh files will be essential to testing and debugging your smoothing code.

2.1.1 Reading

Write a MATLAB routine that reads an OBJ file into a list of vertices and faces, starting with the template below. You should need nothing more than the basic file I/O functions (fopen, fscanf, etc.).

```
function [V,F] = read_mesh( filename )
function [V,F] = read_mesh( filename )
Loads a mesh in Wavefront OBJ format.
INPUT:
    filename - path to mesh file
OUTPUT:
    V - dense 3x|V| matrix of vertex positions
    F - dense |F|x3 matrix of faces as 1-based indices into vertex list
```


2.1.2 Writing

Write a MATLAB routine that writes an OBJ file to disk following the template below.

```
function write_mesh( filename, V, F )
function write_mesh( filename, V, F )
%
Write a mesh to disk in Wavefront OBJ format.
INPUT:
    filename - path to mesh file
    V - dense 3x|V| matrix of vertex positions
    F - dense |F|x3 matrix of faces as 1-based indices into vertex list
```


2.2 Curvature Operator

Write a MATLAB routine that builds a sparse $|V| \times|V|$ matrix that represents the curvature operator

$$
K\left(x_{i}\right)=\frac{1}{4 A_{i}} \sum_{j \in N(i)}\left(\cot \alpha_{j}+\cot \beta_{j}\right)\left(x_{i}-x_{j}\right)
$$

where x_{i} is a vertex, $N(i)$ are the indices of its neighboring vertices, and α_{j} and β_{j} are the angles opposite the edge between x_{i} and x_{j}. The area A_{i} is typically the area of the Voronoi region around x_{i}, but for this assignment you can approximate A_{i} as one-third the total area of the triangles containing x_{i}. (Note that this definition does not take boundaries into account. Details about handling boundaries can be found in the paper on implicit fairing, though you are not required to implement these features for this assignment.)

If you think of the vertex locations as being stored in a $3 \times|V|$ matrix X, then K will be applied to (the transpose of) each row of X independently to compute the corresponding coordinates of the mean curvature normals. Hence each term of the sum will contribute the value $\left(\cot \alpha_{j}+\cot \beta_{j}\right)$ to entry $K_{i i},-\left(\cot \alpha_{j}+\cot \beta_{j}\right)$ to entry $K_{i j}$, etc.

Note that when filling in entries of K it will be much easier to iterate over each face and compute its contribution to each of its vertices than, say, iterating over edges. Also note that you'll want to use a sparse matrix (e.g., $K=\operatorname{sparse}(n, n)$) since most entries of K equal zero and you'll likely run out of memory (and time) otherwise. Finally, you should be careful not to divide by triangle areas close to zero since this will cause poor numerical behavior. (Terms involving the reciprocal of a small area can simply be omitted from curvature calculations.)

The routine you write should follow the template below.

```
function K = curvature( V, F )
% function K = curvature( V, F )
Smooths vertex positions using a mean curvature flow with explicit time stepping.
INPUT:
    V - dense 3x|V| matrix of vertex positions
    F - dense |F|x3 matrix of faces as 1-based indices into vertex list
OUTPUT:
    K - sparse |V|x|V| matrix representing curvature operator
```

\%

2.3 Curvature Flow

Write a MATLAB routine that applies the curvature operator K to a mesh using either explicit or implicit time stepping. In this context, explicit time stepping means that we take the current vertex positions, compute the
curvature vectors, and add these vectors times a small time step to the original positions to get the smoothed positions. In matrix notation, this is equivalent to

$$
X_{i}^{n+1}=(I-\Delta t K) X_{i}^{n}
$$

where I is an identity matrix of the same dimensions as K, X_{i}^{n} is the i th component ($x=1, y=2, z=3$) of the position vector at timestep n and $\Delta t \in \mathbb{R}$ is the size of the time step. Repeating this process for several time steps will make the surface successively smoother. However, this explicit scheme is susceptible to numerical blow up (i.e., the error is unbounded with respect to time) if we pick a Δt that is too large. Instead, we can use an implicit scheme:

$$
(I+\Delta t K) X_{i}^{n+1}=X_{i}^{n}
$$

where we now have to solve for X^{n+1}. This scheme allows us to take an arbitrarily large time step without fear of numerical blow up.

Both schemes should be trivial to implement in MATLAB once the curvature operator K is defined. In particular, you may simply use the backslash (\backslash) operator to solve the implicit system. For example, to solve a general linear system $B x=d$ for the vector x, you would write
$x=B \backslash d$
It is also useful to note that while the matrix arising from the implicit system is asymmetric, we can multiply by a matrix A with Voronoi areas on the diagonal to make it symmetric:

$$
(A+\Delta t A K) X_{i}^{n+1}=A X_{i}^{n}
$$

(in practice this means we omit the reciprocal area term from our curvature normal computation and store these areas in the matrix A instead). The advantage of applying this transformation is that it allows us to use a number of highly efficient linear solvers (such as the conjugate gradient method) that only work only on symmetric systems.

The routine you write should follow the template below.

```
function V = smooth( V0, K, h, explicit )
function V = smooth( V0, K, h, explicit )
Smooths vertex positions using a mean curvature flow.
INPUT:
        V0 - dense 3x|V| matrix of original vertex positions
            K - sparse |V|x|V| matrix of cotangent weights
            h - timestep
    explicit - 1 to use explicit time stepping; 0 otherwise.
OUTPUT:
    V - dense 3x|V| matrix of new vertex positions
```


2.4 Putting it All Together

Once you have all the above subroutines written, you should be able to run the following script to load in a mesh, apply smoothing, and save the smoothed mesh to disk. It is probably a good idea to test out individual routines (e.g., reading and writing meshes) by commenting out lines you're not currently interested in. In MATLAB, lines can be commented out by putting a percent (\%) at the beginning of the line. We will provide you with several meshes on which you can run your code; you should expect to get results similar to those shown below. We will also provide you with a test mesh containing only a few vertices - it can be extremely helpful to check the values produced by your code against those computed by hand. You will need a way to view the meshes generated by your program - one free viewer that is fairly easy to use is Wings 3d. Before handing in your code you should verify that you get good results when taking a single, arbitrarily large step
using the implicit scheme, and that the explicit scheme blows up with this same time step. (You should also verify that the explicit scheme works for a sequence of smaller steps.) Once you've finished, code should be emailed to the TA.

```
stderr = 2;
input_filename = '../meshes/noisy_torus.obj';
output_filename = '../meshes/out.obj';
timestep = 40.0;
iterations = 1;
explicit = 0;
fprintf( stderr, 'Reading...\n' );
[V,F] = read_mesh( input_filename );
fprintf( stderr, 'Smoothing...\n' );
for i = 1:iterations
    fprintf( stderr, ' iter: %d/%d\n', i, iterations );
    K = curvature( V, F );
    V = smooth( V, K, timestep, explicit );
end
fprintf( stderr, 'Writing...\n' );
write_mesh( output_filename, V, F );
disp( 'Done.' );
```


