Homework 1: Topological Invariants of Discrete Surfaces

1 Euler Characteristic

1.1 Polyhedral Formula

A topological disk is, roughly speaking, any shape you can get by deforming the region bounded by a circle without tearing it, puncturing it, or gluing its edges together. Some examples of shapes that are disks include the interior of a square, a flag, a leaf, and a glove. Some examples of shapes that are not disks include a circle, a ball, a sphere, a DVD, a donut, and a teapot. A polygonal disk is simply any disk constructed out of simple polygons. Similarly, a topological sphere is any shape resembling the standard sphere, and a polyhedron is a sphere made of polygons. More generally, a piecewise linear surface is any surface made by gluing together polygons along their edges; a simplicial surface is a special case of a piecewise linear surface where all the faces are triangles. The boundary of a piecewise linear surface is the set of edges that are contained in only a single face (all other edges are shared by exactly two faces). For example, a disk has a boundary whereas a polyhedron does not. You may assume that surfaces have no boundary unless otherwise stated.

polygonal disk

(neither)

polyhedron

Show that for any polygonal disk with V vertices, E edges, and F faces, the following relationship holds:

$$
V-E+F=1
$$

and conclude that for any polyhedron $V-E+F=2$.
(Hint: use induction.)

1.2 Euler-Poincaré Formula

Clearly not all surfaces look like disks or spheres. Some surfaces have additional handles that distinguish them topologically; the number of handles g is known as the genus of the surface (see illustration above for examples). In fact, among all surfaces that have no boundary and are connected (meaning a single piece), compact (meaning contained in some ball of finite size), and orientable (having two distinct sides), the genus is the only thing that distinguishes two surfaces. A more general formula applies to such surfaces, namely

$$
V-E+F=2-2 g
$$

which is known as the Euler-Poincaré formula. (You do not have to prove anything about this statement, but it will be useful in later calculations.)

2 Tessellation

2.1 Regular Valence

Vertex v is regular.

Vertex w is irregular.

The valence of a vertex in a piecewise linear surface is the number of faces that contain that vertex. A vertex of a simplicial surface is said to be regular when its valence equals six. Show that the only (connected, orientable) simplicial surface for which every vertex has regular valence is a torus ($g=1$). You may assume that the surface has finitely many faces.
(Hint: apply the Euler-Poincaré formula.)

2.2 Minimally Irregular Valence

Show that the minimum possible number of irregular valence vertices in a (connected, orientable) simplicial surface K of genus g is given by

$$
m(K)= \begin{cases}4, & g=0 \\ 0, & g=1 \\ 1, & g \geq 2\end{cases}
$$

assuming that all vertices have valence at least three and that there are finitely many faces.

3 Discrete Gaussian Curvature

3.1 Area of a Spherical Triangle

Show that the area of a spherical triangle on the unit sphere with interior angles $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is

$$
A=\alpha_{1}+\alpha_{2}+\alpha_{3}-\pi
$$

(Hint: consider the areas A_{1}, A_{2}, A_{3} of the three shaded regions (called "diangles") pictured below.)

3.2 Area of a Spherical Polygon

Show that the area of a spherical polygon with consecutive interior angles $\beta_{1}, \ldots, \beta_{n}$ is

$$
A=(2-n) \pi+\sum_{i=1}^{n} \beta_{i} .
$$

(Hint: use the expression for the area of a spherical triangle you just derived!)

3.3 Angle Defect

Recall that for a discrete planar curve we can define the curvature at a vertex as the distance on the unit circle between the two adjacent normals (see slides from Lecture 1). For a discrete surface we can define (Gaussian) curvature at a vertex v as the area on the unit sphere bounded by a spherical polygon whose vertices are the unit normals of the faces around v. Show that this area is equal to the angle defect

$$
d(v)=2 \pi-\sum_{f \in F_{v}} \iota_{f}(v)
$$

where F_{v} is the set of faces containing v and $\angle_{f}(v)$ is the interior angle of the face f at vertex v.
(Hint: consider planes that contain two consecutive normals and their intersection with the unit sphere)

3.4 Discrete Gauss-Bonnet Theorem

Consider a (connected, orientable) simplicial surface K with finitely many vertices V, edges E and faces F. Show that a discrete analog of the Gauss-Bonnet theorem holds for simplicial surfaces, namely

$$
\sum_{v \in V} d(v)=2 \pi \chi
$$

where $\chi=|V|-|E|+|F|$ is the Euler characteristic of the surface.

