
CS 177 - Fall 2010

Homework 1: Topological Invariants of Discrete Surfaces

1 Euler Characteristic
1.1 Polyhedral Formula
A topological disk is, roughly speaking, any shape you can get by deforming the region bounded by a circle
without tearing it, puncturing it, or gluing its edges together. Some examples of shapes that are disks include
the interior of a square, a flag, a leaf, and a glove. Some examples of shapes that are not disks include a circle,
a ball, a sphere, a DVD, a donut, and a teapot. A polygonal disk is simply any disk constructed out of simple
polygons. Similarly, a topological sphere is any shape resembling the standard sphere, and a polyhedron is a
sphere made of polygons. More generally, a piecewise linear surface is any surface made by gluing together
polygons along their edges; a simplicial surface is a special case of a piecewise linear surface where all the
faces are triangles. The boundary of a piecewise linear surface is the set of edges that are contained in only
a single face (all other edges are shared by exactly two faces). For example, a disk has a boundary whereas a
polyhedron does not. You may assume that surfaces have no boundary unless otherwise stated.

polygonal disk polyhedron(neither)

Show that for any polygonal disk with V vertices, E edges, and F faces, the following relationship holds:

V − E + F = 1

and conclude that for any polyhedron V − E + F = 2.
(Hint: use induction.)

1.2 Euler-Poincaré Formula

sphere
(g=0)

torus
(g=1)

double torus
(g=2)

Clearly not all surfaces look like disks or spheres. Some surfaces have additional handles that distinguish
them topologically; the number of handles g is known as the genus of the surface (see illustration above for
examples). In fact, among all surfaces that have no boundary and are connected (meaning a single piece),
compact (meaning contained in some ball of finite size), and orientable (having two distinct sides), the genus
is the only thing that distinguishes two surfaces. A more general formula applies to such surfaces, namely

V − E + F = 2 − 2g,

which is known as the Euler-Poincaré formula. (You do not have to prove anything about this statement,
but it will be useful in later calculations.)
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2 Tessellation
2.1 Regular Valence

v

Vertex v is regular. Vertex w is irregular.

w

The valence of a vertex in a piecewise linear surface is the number of faces that contain that vertex. A
vertex of a simplicial surface is said to be regular when its valence equals six. Show that the only (connected,
orientable) simplicial surface for which every vertex has regular valence is a torus (g = 1). You may assume
that the surface has finitely many faces.

(Hint: apply the Euler-Poincaré formula.)

2.2 Minimally Irregular Valence
Show that the minimum possible number of irregular valence vertices in a (connected, orientable) simplicial
surface K of genus g is given by

m(K) =


4, g = 0
0, g = 1
1, g ≥ 2,

assuming that all vertices have valence at least three and that there are finitely many faces.

3 Discrete Gaussian Curvature
3.1 Area of a Spherical Triangle
Show that the area of a spherical triangle on the unit sphere with interior angles α1, α2, α3 is

A = α1 + α2 + α3 − π.

(Hint: consider the areas A1, A2, A3 of the three shaded regions (called “diangles”) pictured below.)

A1 A2 A3

A

α1

α2

α3
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3.2 Area of a Spherical Polygon
Show that the area of a spherical polygon with consecutive interior angles β1, . . . , βn is

A = (2 − n)π +
n∑

i=1

βi.

β1β5

β4
β3 β2

(Hint: use the expression for the area of a spherical triangle you just derived!)

3.3 Angle Defect
Recall that for a discrete planar curve we can define the curvature at a vertex as the distance on the unit circle
between the two adjacent normals (see slides from Lecture 1). For a discrete surface we can define (Gaussian)
curvature at a vertex v as the area on the unit sphere bounded by a spherical polygon whose vertices are the
unit normals of the faces around v. Show that this area is equal to the angle defect

d(v) = 2π −
∑
f∈Fv

∠ f (v)

where Fv is the set of faces containing v and ∠ f (v) is the interior angle of the face f at vertex v.
(Hint: consider planes that contain two consecutive normals and their intersection with the unit sphere)

v N̂

3.4 Discrete Gauss-Bonnet Theorem
Consider a (connected, orientable) simplicial surface K with finitely many vertices V, edges E and faces F.
Show that a discrete analog of the Gauss-Bonnet theorem holds for simplicial surfaces, namely∑

v∈V

d(v) = 2πχ

where χ = |V | − |E| + |F| is the Euler characteristic of the surface.
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