Working with Meshes

CS 176 Winter 2011

Surfaces/Meshes

We’ll stick to triangles

CS 176 Winter 2011

Discrete Surfaces

Setup

- topology & geometry
- simplicial complex: “triangle mesh”
- 2-manifold \(K = \{V, E, T\} \)
 \(V = \{v_i\} \quad E = \{e_{ij}\} \quad T = \{t_{ijk}\} \)
- Euler characteristic
 \(F - E + V = 2(1 - g) = \chi \)

CS 176 Winter 2011

What’s a Mesh?

Formally

- abstract simplicial complex \(K \)
 - singletons, pairs, triples, ... of integers
 \(V = \{1, 2, 3, \ldots\} \quad E = \{\{i, j\}, \{k, l\}, \ldots\} \)
 \(F = \{\{i, j, k\}, \{j, i, l\}, \ldots\} \)
 - containment property
 \(\rho \in K \wedge \sigma \subseteq \rho \Rightarrow \sigma \in K \)
 - partial order \(\preceq \), face, coface, \(\emptyset \)

CS 176 Winter 2011

Simplicial Complex

Topological realization

- identify \(V \) with unit vectors in \(\mathbb{R}^N \)
 \(|K| = \bigcup_{\sigma \in K} |\sigma| \)
- subset topology of ambient space
- closure, star, and link
 \(ClL = \{p|\rho \subseteq \sigma, \sigma \in L\} \)
 \(StL = \{p|\sigma \subseteq \rho, \sigma \in L\} \)
 \(L - \emptyset \)

CS 176 Winter 2011

Topological Structure

2-manifold (with boundary)

- every point has an open, (half-) disklike subset surrounding it

\[|K| \text{ 2-manifold iff } |St v| \approx \mathbb{R}^2 \]

\[|St \sigma| = \bigcup_{\rho \in St \sigma} \text{ int}|\rho| \]

CS 176 Winter 2011
Topological Invariants

Euler characteristic
- for surfaces: $F-E+V=\chi=2(g-1)$
- not required to be simplicial
- more generally for simplicial complexes
 \[\chi(K) = \sum_{\emptyset \neq \rho \in K} (-1)^{\dim \rho} \]

Simplicial Complex

Geometric realization
- the concrete embedding $\pi_v(K)$
 \[\pi_v : \mathbb{R}^n \rightarrow \mathbb{R}^3 \]
- vertex images specify everything
- piecewise linear approximation
- presumably approximation of underlying smooth surface

Mesh Structure

Input
- typically
 - list of vertices (how long?)
 - list of triangles (until EOF)
- need to build mesh structure
 - infer topology
 - check topology
 - oriented (orientable?)

Building the Mesh

What do we need?
- array of pointers to vertices
- choices for basic topology primitive
 - (half-)edges
 - different variants
 - triangles
 - we'll use triangles

Types of Operations

What do we need to support?
- iterate over all vertices (easy)
- iterate over all triangles (easy)
- for a triangle visit
 - incident vertices (easy)
 - incident triangles (easy)
Types of Operations

What about edges?
- visit all edges
- not explicitly represented...
- do we need edges? Yes!
- discover triangle adjacencies
- map pairs of integers to triangles
 \[e_{ij} \mapsto \{t_{ijk}, t_{jil}\} \]

Operations to Support

For later (think about it now...)
- edge collapse
- legality?
- edge flip

Data Structures

Triangles
- consistent ordering of vertex and triangle incidences

```c
Triangle {
  Vertex *v[3];
  Triangle *t[3];
}
```
- triangles across from vertices

What Data Where?

Attributes
- normal, color, texture coordinates
- later: forces, velocities, mass
- why not just lay everything out in arrays?
- changes in structure!
- very hard to debug...

Examples

Vertex normals
- gradient of volume
 \[n_i = 1/2 \sum_{t_{ijk}} (p_j - p_i) \times (p_k - p_i) \]

```
\forall v_i : n_i = 0
\forall t_{ijk} : a_{ijk} = (p_j - p_i) \times (p_k - p_i)
\forall t_{ijk} :
  a_{i+} = a_{ijk}
  a_{j+} = a_{ijk}
  a_{k+} = a_{ijk}
\forall v_i : N_i = n_i/|n_i|
```

Example

Gaussian curvature

\[\forall v_i : K_i = 2\pi - \sum_{t_{ijk}} \alpha_{ijk} \]
\[\forall v_i \in V \setminus \partial V : K_i = 2\pi \]
\[\forall v_i \in \partial V : K_i = \pi \]
\[\forall t_{ijk} :
 K_{ij} = \text{atan2}(|a_{ijk}|, (p_j - p_i) \cdot (p_k - p_i))
 K_{ji} = \text{atan2}(|a_{ijk}|, (p_k - p_i) \cdot (p_j - p_i))
 K_{kj} = \text{atan2}(|a_{ijk}|, (p_i - p_k) \cdot (p_j - p_k))
\]
Principles

As you write code...
- assumptions are ok, but you must assert them explicitly
- orientability
- 2-manifold property
- avoid storing the same information multiple times
- nasty to keep current under changes

Other Tricks

As you write code
- use two sided lighting
- abstract the iterators!
 - what about boundary vertices?
- keep iterators sorted
 - interior then boundary vertices
 - interior then boundary triangles