Behaviour of recursive
division surfaces near
extraordinary points

D Doo and M Sabin*

The behaviour of the limit surface defined by ‘a recursive
division construction can be analysed in terms of the
eigenvalues of a set of matrices. This analysis predicts
effects actually observed, and leads to suggestions for
the further improvement of the method.

A recursive division surface definition takes a polyhedron-
like configuration of points, edges and faces (the faces
need not be plane), and generates a surface as the limit of
a ‘chopping off the corners’ process. There are many
detailed variants of this process. All of them construct

a new polyhedron at each step with more vertices and
smaller faces thgn the original, the surface being the limit
after many steps of division. They differ in the rules by
which the new vertices are constructed.

After several steps, the bulk of the polyhedron con-
sists of faces arranged in a regular lattice. There are,
however, a finite number of extraordinary points at
which the regularity of the lattice is disturbed. The
properties of the regular parts of the surface are derived
in terms of Cartesian product B-spline surfaces. This
paper is concerned with the behaviour near the
extraordinary points.

Because the number of extraordinary points does not
increase with successive steps of the algorithm, the
distance between them remains more or less constant.

As the sizes of the faces shrink at every step, the number
of faces between the extraordinary points has to grow,
so they can be treated as being isolated from each other
by regions of regular lattice.

CATMULL. -CLARK CUBIC FORMULATION

In this formulation’? | which is used as an example, the
extraordinary points are vertices at which n edges join,
when n is not 4. Such points are separated by regions
of regular rectangular lattice. The region of an extra-
ordinary point may be represented diagrammatically
as in Figure 1.

Applying one step of their algorithm gives Figure 2.
Note that the configuration round the extraordinary
point is topologically similar to Figure 1. The points
are deliberately labelled to stress this similarity. In the
original formulation (which for illustration has simpler
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Figure 1. Region of an extraordinary point

Figure 2. Applying one step of the Catmull—Clark
algorithm to an extraordinary point
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{ numibers than the most recent variant), the new points
' are computed from the old by the equations

f/ q,.=(0i+’RI-+RI’+‘| +S)/4 I=],I7
ri=Qi+qiq * R+ S8)4 =l (1)

s=(2Z+ £Rivos)a
i i

The notation used here is slightly modified from the
original, but conveys the same information.

MATRIX FORM

These equations are linear in the points, and so may be
expressed in matrix form

F‘h— B IR
[ ] ®
[ J ¢
qn Qn
r = M R,
L ] [ ]

[ ]
I'n Rn
Ls ] L R I

. At each step, the new surroundings of the extraordinary
point are obtained by multipying the old by matrix M

i'of constant elements.

. It is a standard result in linear algebra that repeated

$ multiplication of a vector by a constant matrix converges
. toward the eigenvector corresponding to the largest eigen-
‘value of the matrix. The behaviour of the limit surface is
F.analysed, therefore, in terms of the eigenproperties of M.

‘FOURIER TRANSFORM

L Although it is possible to evaluate eigenvalues and eigen-
b vectors numerically, it provides considerably more insight
1o use the cyclic symmetry of Figure 1 to replace M by a
mumber of smaller matrices for which algebraic manipul-
ation is possible. The method used here applies a discrete
-Fourier transform to Q, R and S, and then separates the .
erms of different frequency.

Let
2Mije/n-
=¥ Qe ™" j= v
w=0

i define the Fourier coefficients Q,,, w=0. n/2.
p Similar equations for R;, g;, r; define corresponding sets
of coefficients R, g, and ry,.
Because Q, are complex and Q; are real (Q, is real
- if w = 0 or 2w = n), there are always exactly n degrees
of freedom to satisfy the n equations.
S and s can also be forced into this pattern by setting

So =S
Sw = 0, w f 0
Note that
nf2 2n{A1)jw/n
Qw1=Z Que
w=0

nf2 2njw/n 2miw/n
=Z/ Qe e
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nf2 2mjw/n 2mijw/n
= }! Que e
w=0

—2njw/n

L 2njw/n
and, writinga,,, fore and a¥, fore

n/2 2nijw/n
Qw1 =2 a,Que

w=0
With this substitution made, equations (1) can be rewritten
as a set of equations for each value of w, and in each set we
can cancel out the e 2"/«/ This procedure is closely
analogous to the treatment of time series data in terms of
components of different frequencies. In this case, the
frequency w may be thought of as the number of com-
plete oscillations of, say, z per complete cycle through the

Q.
This gives

q, = (Q, *+ (1+a,, )R, + S, )/4
ro = ((1+ag)a,, + R, +5,,)/4
so = (qo + Ro + 25,)/4

which, by substituting the equations for q,, into those
for r,, and sq, gives

w=0,n/2

(q0] [4116 8/16 4/16 Qo
ro|=|2/16 816 6/16 Ro| w=0
so| [1/16 6/16 9/16 So

(.| = [4116 401+a,)14Qu|
[ fw | = [ (1+a8)/16 ((1+a%) (14a,,)+4)/16{| Ry, wt

The eigehvalues of these equations are readily determined to
be 1,1/4,1/16 at w = 0 and, writing
(T+az2) (1+a,) =20, (=2(1 + cos 2mw/n))
440,27 [¢, (8+9,)] atw#o
16

INTERPRETATION: n =4

Consider first the situation where n = 4. This is an ordinary
point of the surface, and so it is known, for example, that it

has continuity of first and second derivatives.
The relevant values of w are 0, 1 and 2 only
®atw=1 ¢y, =1+cos2m =1

®atw=2 ¢, =1+cos4nm =0
3

Thus the eigenvalues of interest are

e w=0 114116
ew=1 1/2,1/8
ow=2 1/41/4

The largest eigenvalue is the value 1.0 at w = 0. This indicates
that as the iterations proceed, the configuration as a whole
stays in the same place. This unit eigenvalue must have

this value because all rows of the w = 0 matrix sum to unity,
which will always happen when the new points at each step
are calculated as weighted means of the old points. The
effect of this eigenvalue can be cancelled by taking as
coordinate system origin the position to which the extra-
ordinary point converges, and so this eigenvalue will be
ignored in the rest of this analysis.
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The next eigenvalue is the value 1/2 at w = 1. This
indicates that, as iteration proceeds, both the Q; and the
R; converge to affine-regular n-gons (affine projections of
regular n-sided polygons®) which halve in size without
rotation at each step. This behaviour has been observed.

Convergence occurs because the relative contribution
from other terms in the series shrinks, their eigenvalues
being smaller.

Affine-regular n- gons appear because w = 1 for the
dominant eigenvalue. If the unit frequency were the only
term present, which holds in the limit, the components of
Q; and R; have the form

X=ay sin(%;;ﬁbx)

y=a, sin(_2”1r_i+ by)
Z=4, sin(2mi + b,)
n

which generate the vertices of such an n-gon when / is given
the integer values from 1 to n.

Halving takes place because the value of the eigenvalue
is 1/2. Rotation is absent because the eigenvalue is real,
so that the phase shifts (values of b) remain constant from
iteration to iteration, while the values of @ halve.

If that X~ Y plane is chosen towards which the plane of

the n-gons converges, the behaviour of Z, on which the
continuity of the limit surface then depends, is domin-
ated by the third eigenvalue, in this case the values 1/4
atw=0and w=2.

The w = 0 éigenvalue controls the behaviour of cup-
shaped configurations; the w = 2 eigenvalue for saddle-
shaped data. In both cases the out-of-plane components
are divided by four every step.

CONTINUITY

Writing A, for the dominant eigenvalue at frequency w
gives

Ao = 1/4 (excluding the unit eigenvalue)
A =172
)\2 = 1/4

The slope continuity may be investigated by setting up a
one-sided estimate of the first derivative, and examining
its limiting behaviour, -

Such an estimate is £z/r (r> = x* + p?) for any point,
such as Q;.

Because of the choice of axes, r will be multiplied by
A1 ateach step and z by A, so that the limit of kz/r
dependson Ay, / A;.

If this is less than unity, the estimate will shrink at
every step, converging to zero, and since this limit is inde-
pendent of the direction taken in the XY plane, the
surface is slope-continuous.

Having established this, z/r® can be used as an estimate
of the second derivative. This estimate is multiplied by
Aw / A} atevery step. For nn = 4 this ratio is 1.0 and so the
curvature takes some finite nonzero value. (The continuity
of curvature follows from the symmetry of the w = 0 and
w = 2 configurations.)

INTERPRETATION: n # 4

The values of A, together with Ao,/A; and Ayy/A? are
tabulated for various values of 7 in Table 1.
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Figure 3. \y/\3 < 1

Table 1. Eigenvalues of original form
n=3 n=5 n=6 n=8 n-ow

o 0250 0250 0250 0.250 0.250
A 0410 0.550 0.580 0611 0.655
A 0340 0410 0500 0.655
As 0.250 0366 0.655
e 0.250 0.655
o /Ay 0609 0455 0431 0409 0.381
MNo/A] 1487 0826 0.744 0670 0.584
A A 0618 0707 0818 1.000
A /N 1124 1220 1339 1528

1t can be seen that A,/ \; is less than unity for all n,
and so slope continuity is achieved. A,/A?, however, is
considerably greater than unity for n = 3, and so the
estimate of curvature increases without limit as division
proceeds, giving behaviour of the form "

z=rP with1<p <2

This behaviour may be described loosely as a discontinuity
of a fractional derivative.

Forn > 4, \o/A} is less than unity, so that the curvature
tends to zero, giving a local flat spot on the surface.

These types of behaviour are illustrated by Figures
35 which show the effects of A,,/A} < 1,=1and >1.
The points plotted use Ay = 0.250, A, =0.611and A; =
0.500, which are the values for the original Catmull—
Clark cubic when n = 8. Figure 5 is directly comparable
with Figure 10 of the Catmull—Clark paper?. Figure 4
illustrates the desirable behaviour with A, = A =0.373.

IMPROVEMENTS

The behaviour described above has been observed by
Catmull and Clark?, and they have produced a modified
version, in which the equation for s is weighted by the
connectivity of S.
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Figure 4. \gy/A} = 1

| Figure 5. \y/\ > 1

$= (21 + Z70 + (0-2)S)in

- This changes the w = 0 matrix and its eigenvalues, but
does not alter the w > 0 properties (Table 2).

The value of Ao/A} for 7 = 3-is now much closer to
unity, thus explaining the improvement seen on the
tetrahedral data.

2o/Ad is also brought closer to unity forn > 4, but
the value is now greater than unity instead of less. The
local flat spots are replaced by local mﬁnmes of curv-
 ature.

. Itisclear that further improvement could be made
by using as the equation for s

jolume 10 number 6 november 1978

s (Ege T W-2s)W

where W is a precomputed function of n, chosen to give
7\01')\’ =1
The values of W could be stored as a table indexed by n

for reasonable values of 7, and as an asymptotic expres-
sion for very large values; so very little extra computing

cost need be incurred.

Even this change would not affect the behaviour with
data containing components of high w value. A scheme
of higher performance could use weighted means in all
three equations, with precomputed weights chosen to
give either

/A =1=0/A1 = R:9/7\1

orXg=1/4 A\, =1/2 N =1/4

for all values of n

The nonlinear simultaneous equations need only be
solved once for.each n, because the values coulid. again
be stored in tables. '

RELEVANCE

It may be asked whether such ‘fine tuning’ is important,
when the only effect visible i a slight highlighting. The
answer must be that for application in manufacturing,
there are two reasons for avoiding fractional power
derivative discontinuities.

The first is.that concavities of zero radius cannot be
machined, and so it is better if the numerical model does
not include them.

The second is that many analysis procedures will function
by using the closed-form equations rather than using the

Figure 6. Quadratic form

359



Table 2. Eigenvalues of revised form
n=3 n=5 n=6 n=8 n-ree

Ao 0.167 0322 0375 0443 0655
A 0410 0.550 0.580 0611 -0.655
Ao /N 0406 0.586 0647 0725 1.000
o / N} 0991 1.066 1.116 1.18 1.528

Table 3. Eigenvalues for quadratic formulations
n=3 n=4 n=5 n=6 n=8 noee

Xo 0.250 0.250 0.250 0.250 0.250 0.250
A\ 0.375 0.500 0.577 0.625 0.677 0.750
A 0.250 0.298 0.375 0.500 0.750
Ao /Ny 0667, 0500 0433 0400 0.369 0.333

Ao/} 1.778 1.000 0.750 0.640 0.546 0.444
N 0.500 0.516 0.600 0.739 1.000
A /A 1.000 0.894 0960 1.092 1.333

subdivision process itself. In this ease, the recursive divi-
sion proceeds locally only until an approximation can be
generated for the infinite sequence of patches round each
extraordinary point. It is likely that fractional power be-
haviour will be much less easy to approximate, thus delay-
ing the level at which approximation is possible.

QUADRATIC FORMULATIONS

Two quadratic forms have been analysed, in which the
extraordinary points are at the centres of n-sided faces.
During the division step, each face is replaced by a new
face, which is connected across the old edges and across
the old vertices by other new faces.
Applying this process to Figure:6 gives Figure 7.

~In such methods the vertices of each new face are
functions only of the vertices of the corresponding old
face.

n
- \
- 7Y

By symmetry, Wi isa function of li—j lonly,

and so a vector of n/2 + 1 values of W for each value of
n defines the variant completely. '
The original Catmull quadratic' uses

Wj; = (4n + 2)/8n limj =0
W = {n+2)/8n lieji=1
Wi = 2/8n i—j 1> 1

which results in the eigenvalues in Table 3.
This is considerably better than the original cubic.
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Figure 7. Quadratic form after division

The Doo—Sabin quadratic* uses

Wj; = (n + 5)/4n =]

Wy = (3 + 2 cos(2n(/—j)/n))/4n 1#]
which gives dominant eigenvalues

=140 =12, 0= 1/40>1

for all n, thus giving discontinuity of exactly the second
derivative under all circumstances. .
This ideal behaviour may not be significantly better than

the Catmull quadratic in normal use, but that it can be

achieved in the quadratic case encourages the search for
an equally optimal cubic formulation. '
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