
CS171 HW0 Recitation

10/4/2019

Homework is available on the course website!

HW0 here:
http://courses.cms.caltech.edu/cs171/assignments/hw0/hw0-html/cs171hw0.html

Notes on Geometric Transformations:
http://courses.cms.caltech.edu/cs171/assignments/hw1/hw1-notes/notes-hw1.html

Class Virtual Machine:

http://courses.cms.caltech.edu/cs171/materials/171_vm.ova (will be updated soon)

Fill out the office hours survey! Closing 7:30pm tonight.

http://courses.cms.caltech.edu/cs171/assignments/hw0/hw0-html/cs171hw0.html
http://courses.cms.caltech.edu/cs171/assignments/hw1/hw1-notes/notes-hw1.html
http://courses.cms.caltech.edu/cs171/materials/171_vm.ova

Primer on geometric transformations

● Given some geometry, we also want a way to customize it.

○ “I want a larger bunny…”

● Three main transformations are translation, rotation, and scaling.

● Transformations can conveniently be represented by matrices.

Homogeneous coordinates

● In practice, we use 4 x 4 matrices.

● Homogeneous coordinates allow translation and perspective
projection to be expressed as matrices.

Homogeneous coordinates

● For a given point p in 3D space with Cartesian coordinates (X, Y, Z), we
express it in homogeneous coordinates (x, y, z, w) where w is known as
the homogeneous component.

Translation Matrix

Rotation Matrix

● Rotating about an axis in the direction of the unit vector u
counterclockwise by an angle θ
○ Make sure your vector is a unit vector -- check for this.

How to check if your rotation matrix is correct

● Rotation matrices are orthogonal

● Easy way to check is by multiplying your rotation matrix by its
transpose

○ Should get the identity matrix out

○ R * R^T = I = R^T * R

Scaling Matrices

Combining transformations

We can multiply all transformation matrices together into a single matrix.

Order is important!

● Matrix multiplication is not necessarily commutative.

● For example, If we tell you to Scale the points (S), translate the points
(T), Rotate the points (R), and then translate again (T2), with the point
vector v.

○ The sequence of matrix multiplications should look like:
(T2)(R)(T)(S)(v)

Purpose of this week’s assignment

● Write functions to parse files containing geometry and their
transformations.

● Practice outputting a simple image.

● Get set up for the rest of the term’s assignments. You will use
these functions over and over!

Part 0: Setting up OpenGL

● Nothing to turn in!

● Set up OpenGL on your computer, which will be used in a couple
weeks.

● We provide a demo program for you to run, to make sure everything is
working properly.

● Installation guide available on website - ask TAs if you run into any
difficulties.

TAs: Alden Rogers, Nicole Feng, Ethan Jaszewski
Resources: Piazza, office hours

Part 1: Parsing .obj files

What are .obj files?
Files that describe polygonal geometry.

What information is needed to specify such geometry?
At minimum, vertices and faces.

wordpress.discretization.de

Part 1: Parsing .obj files

How are vertices specified?
Vertices are specified by a ‘v’, followed by 3 space-separated
floats corresponding to XYZ Cartesian coordinates.

Example:

indicates a vertex at position (1.0, 2.0, -4.5).

Part 1: Parsing .obj files

How are faces specified?
Faces are specified with an ‘f’ followed by 3 space-separated ints
corresponding to the indices of its constituent vertices.

Example:

This tells you how to connect 3 points to make an oriented triangle.
***Note that vertices are 1-indexed, NOT 0-indexed!

An example .obj file

Each line specifies either a vertex or a face.
The vertex list is followed by the face list.

Part 1: Converting .obj files to usable data structures

● We need to convert the .obj file contents into objects we can operate on.

● There is no “correct” way to do this, except we recommend that you
make structs that are simple and extendable, since they will be re-used
and built upon in the following weeks’ assignments.

● Possibilities: Since both vertices and faces have 3 fields, you can have a
struct for vertices and a struct for faces, or one that works for both. Then
have a vector that stores all the vertices, and a vector for all the faces.

Part 1: Command line arguments

You are getting the file names of the obj files to parse from the command line.

int main(int argc, char *argv []) {
…
// stuff
...

}

argc = 1 + (# of arguments)
argv: arguments start with the second entry of the array
(1st element is just the name of the program)

Part 1: File I/O

● I recommend including fstream (feel free to do I/O a different way)
● Use std::ifstream infile(filename) to open the file stream
● Then you can use a while loop

○ While (infile >> x)
○ Puts the next token (whitespace separated by default) into x
○ Can extend this to have multiple token grabs in the while conditional
○ Ex: while (infile >> a >> b >> c >> d)
○ sstream is another possibility

Part 1: Printing out the .obj files you read in

● You’re just going to read in .obj files and spit them back
out to see if you processed them correctly.

● Print the files out in order that they were given.

● You can simply use cout or printf.

Part 2: Working with Eigen

● Eigen is a linear algebra library we will use in this course.

● It will be included in the zip file for hw0, just tell your makefile
to look up one directory after the -I, i.e. -I ../

● Might have some deprecation warnings, ignore them for now.

(Or add -Wno-deprecated-declarations)

Eigen Matrices

Matrix4d m;

m << 4, 11, 7, 2, // row1

 0, 5, 6, 7, // row2

 1, 15, 12, 7, // row3

 13, 0, 12, 10; // row4

Matrix4d m;

m << 4, 11, 7, 2, 0, 5, 6, 7, 1, 15, 12, 7, 13,
0, 12, 10;

Eigen cheat sheet: http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

Part 2: Parsing the input file

● Part 2 involves reading in vectors encoding various
transformations.

● You can just adapt your Part 1 code.

Part 3: Putting the two programs together

● Similar parsing as in Part 1

● Be careful, you might load the same object twice but have
different transformations for it

○ Be sure to name them properly to tell them apart.

Part 4: The PPM Image Format

● The first line is always P3
● The second line specifies x- and y- resolutions (space separated)
● Third line is the maximum pixel intensity (we used 255 in example)
● Each subsequent line should have 3 numbers between 0 and max

intensity
○ RGB values for pixels in grid from left to right, top to bottom

● Just print out to terminal
● Assignment gives example how to view the image you create

PPM example
the first line is always P3

the 2nd line is x- and y-res
(col x row) max intensity value

the 1st row of
pixels

the 2nd row

the 3rd row

Reminders

● HW due next week Wednesday at 3pm
● Office Hours TBD
● You will use your code from parts 1, 2, and 3 again next week!
● If you do a nice job, organize your code nicely into classes/functions

you’ll save time in the future
● Please use functions. Don’t just stick everything in main…
● Submit to Moodle

