
CS174a Computer graphics NURBS Handout

NURBS

Overview

NURBS, and B-Splines in general, have become powerful computer graphics
primitives. Here we will look at some of the basics of B-Spline curves as well as
how to create objects from NURBS surfaces using techniques such as lofting.

1 B-Spline Basics

B-Splines are a common way to represent curves in computer graphics. There
are many reasons for this, as you will soon see. For instance, a cubic B-spline
made up of several segments composited together will possess C2 continuity
between these segments. Unlike Bezier segments, we do not need to impose any
continuity requirements to enforce this continuity. B-splines also possess many
other useful properties which will be explained in the following section.

1.1 Uniform B-Splines

Let us call the ith segment of a cubic B-spline, Qi. This segment is defined
by four control vertices, pi, pi+1, pi+2, pi+3. Therefore, we can see that the fol-
lowing segment, Qi+1, will have control vertices of, pi+1, pi+2, pi+3, pi+4. From
this, we can see that B-spline segments will share control vertices.

Let us now define Qi(u) on the interval u ∈ [0, 1] in the following way:

Qi(u) = Σ
3
k=0 pi+k Bk(u)

where the Bi’s are basis functions.

With Qi+1 defined similarly, we can derive the form of the basis functions in
order to ensure C0, C1, and C2 continuity. For the C0 continuity, we have:

Σ3k=0 pi+k Bk(1) = Σ
3
k=0 pi+k+1 Bk(0)

Since this must hold for all values of p, we must satisfy the coefficients, giving:

B0(1) = 0
B1(1) = B0(0)
B2(1) = B1(0)
B3(1) = B2(0)
0 = B3(0)

1

Repeating this process for the C1 and C2 conditions yields:

B′0(1) = 0 B′′0 (1) = 0
B′1(1) = B′0(0) B′′1 (1) = B′′0 (0)
B′2(1) = B′1(0) B′′2 (1) = B′′1 (0)
B′3(1) = B′2(0) B′′3 (1) = B′′2 (0)
0 = B′3(0) 0 = B′′3 (0)

This creates an underconstrained system (15 equations with 16 unknowns), so
we must enforce an additional constraint. We decide to enforce that the basis
functions sum to one at a point, u = 0 (necessary for the control polygon to be
on the convex hull of the curve).

B0(0) +B1(0) +B2(0) +B3(0) = 1

Solving the above system of equations yields the following forms for the bsis
functions:

B0(u) =
(1−u)3
6

B1(u) =
(3u3−6u2+4

6

B2(u) =
−3u3+3u2+3u+1

6

B3(u) = u3

6

Or in matrix form:

Qi(u) =
1

6

(
u3 u2 u 1

)

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

pi
pi+1
pi+2
pi+3

Now we have an equation for a single segment of the B-spline curve, but how
do we generate the entire curve? In order to do this, we must find a global
parameterization of the curve. We will call this parameter U . Then, the local
parameter, u can be found by u = U − i.

From the above derivations, we can see that each curve segment is governed
by four control points and that each control point (except for the end control
points) influencs four curve segments, Qi, Qi+1, Qi+2, Qi+3, being weighted by
the basis functions B3, B2, B1, and B0, respectively. Moving across a boundary
between segments simply causes pi to be weighted by a different basis function.
We can collect these basis functions into one global “blending” function, Ni(U).

Ni(U) =

B3(U − (i− 3)) i− 3 ≤ U < i− 2
B2(U − (i− 2)) i− 2 ≤ U < i− 1
B1(U − (i− 1)) i− 1 ≤ U < i
B0(U − (i− 0)) i ≤ U < i+ 1

In the following section, we will see that this is but a specific instance of a more
general class of (nonuniform) B-Splines.

2

1.2 Knot Vectors

As we saw in the last section, a uniform B-spline is made up of curve segments
whose ends are at parametrically uniform intervals (eg. [0,1,2,...]). We call these
endpoints knots and term the collection of knots, the knot vector. We now ex-
amine the generalization of uniform B-splines by allowing the knot vector to be
nonuniform.

Previously, we derived the blending function for cubic B-splines. In an effort to
be even more general, we now let the order k of the spline to vary (the degre =
k - 1). Therefore, the blending functions Ni(u) become Ni,k(u) where k = 4 for
cubic spline. Once the blending functions are defined, a spline of order k can
be defined by:

Q(u) = Σni=0 pi Ni,k(u)

The Cox de Boor algorithm is a recursive definition for the blending function
Ni,k(u) and can be stated as follows:

Ni,1 =

{
1 if ti ≤ u < ti+1
0 otherwise

Ni,k(u) =
(u−ti)Ni,k−1(u)
ti+k−1 − ti + (ti+k−u)Ni+1,k−1(u)ti+k − ti+1

where the ti’s are the nondecreasing sequence of knots.

We can see some important properties from this formulation:

1. Ni,k has support over the knot range [ti, ti+k]

2. All Ni,k are non-negative

Ni,k(u) ≥ 0 forall i, k, u

Ni,k partition unity.
Σni=0Ni,k(u) = 1

These two properties together mean that the control polygon of a B-spline
curve is the convex hull of that same curve.

3. If we define 0/0 to be zero, we allow the possibility of knots having the
same value (commonly called multiple knots).

Since N0,k has support of [t0...tk] and Nn,k has support of [tn...tk], there must
be n+ k + 1 knots. One can show:

Number of knots = Number of Control V ertices+ order

From the above equations, we can also see that each blending function is nonzero
over k intervals, and therefore there are at most k blending functions that are

3

nonzero at any given point. From this, we can see that each curve segment
requires k control points for its definition. Therefore, there must be n − k + 2
distinct curve segments, which implies n − k + 2 distinct knot intervals, and
n− k + 3 distinct knots. That leaves (n+ k + 1)− (n− k + 3) = 2k − 2 knots
left to define.

The most common way to define these extra knots is through the use of a
nonperiodic knot vector. This vector forces the curve to interpolate the first
and last control points by repeating the end (first and last) knots k-1 more
times. The knot vector then has the form:

< 0, ..., 0, tk, ..., tn, 1, ..., 1 >

For additional control of the curve, we allow the control points to be defined
in homogenious space. This allows the added flexibility of assigning “weights”
to each of the control points. As the w component is increased, the curve is
pulled towards the control point. The addition of the w paramter also allows the
curves to represent rational functions such as circles. With all of these features,
we have defined NURBS, or Nonuniform rational B-splines.

1.3 Knot Insertion

Once we have a NURBS curve defined by a set of conrtol points, a knot vector
and an order, we can add a new knot to the knot vector (and with it a new
control point) anywhere along the B-spline without changing the shape of the
underlying curve. This is extremely useful in modeling since adding a new knot
allows more local control of the curve. Therefore, we can insert new knots in
the section of the curve that needs refinement, preserving the shape of the other
sections of the curve.

Assume the original curve is defined by:

Q(u) = Σni=0 pi Ni,k(u)

with the knot vector < t0, ..., tn+k >

We insert the new knot t′ such that tj < t′ ≤ tj+1.
Then the new control points are given by:

p′0 = p0, p
′
n+1 = pn, and p

′
i = (1− ai)pi−1 + aipi

ai =

1 i = 1, ..., j − k
t′−ti
ti+k−ti i = j − k + 1, ..., j
0 i = j + 1, ..., n

These new control points leave the original curve unchanged.

4

2 NURBS Surfaces

Now that we have mastered the use of curves, we extend the notion of NURBS
to surfaces. This is a simple extension of NURBS surface in which we separate
the two blending function and take the sum.

Q(u, v) = Σnui=0Σ
nv
j=0 pij Bi(u) Bj(v)

Therefore, where we once had a control polygon, we now have a control mesh. In
the next sections, we will look at how to construct models from NURBS surfaces.
First we will look at fitting NURBS curves using polar forms. Then we will use
these curves and a technique called lofting to create the three-dimensional shape.

2.1 Polar Forms

Any polynomial function F (u) of degree n can be represented by what is known
as a polar form, f(u1, u2, ..., un). These polar forms simplify the construction
of curves and surfaces. The blossoming principal states that every polynomial
has a unique polar form. Further more, this polar form is symmetric (its three
arguments can be written in any order without changing its value), and the po-
lar form is affine in each argument (multiaffine). Thus, the polar form is simply
a symmetric multiaffine map of the function F (u) such that F (u) = f(u, u, ..., u).

The polar form for a monomial function of the form

F (u) = Σni=0 aiu
i

can be given by

f(u1, ..., un) = Σ
n
i=0 ai

(
n
i

)−1
Σ|S|=i,S⊆{1,...,n}Πj∈S uj

For example, the cubic polynomial

F (u) = a0 + a1u+ a2u
2 + a3u

3

has the polar form

f(u1, u2, u3) = a0 +
a1
3
(u1 + u2 + u3) +

a2
3
(u1u2 + u2u3 + u1u3) + a3u1u2u3

One of the useful features of the polar form is that it can be used to determine
the control points for a NURBS curve fitting the polynomial F (u). If the knot
vector is defined as:

rn+1 ≤ ... ≤ r1 < s1 ≤ ... ≤ sn+1
Then the jth control point can be found to be:

pj = f(r1, ..., rn−j , s1, ..., sj)

This result allows us to fit NURBS curves to arbitrary rational functions of
polynomials.

5

2.2 Lofting

Modelling in three dimensions is an extremely hard task. Many different tech-
niques have been made to help the artist model three-dimensional objects from
simpler, easier to model objects. One technique is known as lofting. Here, the
artist defines two curves, a cross section curve and the path curve. The cross
section curve is then lofted, or swept, along the path curve, modulating its size
as it goes. Therefore, a shape is created by stacking up many scaled versions of
the cross section. Since two-dimensional curves are much easier to create (either
by hand or made to fit a surface using techniques such as the previous section)
this technique allows artists to create interesting models with much more con-
trol and ease.

The act of lofting one curve along another is basically creating a tensor product
surface. Let us examine this further by the example of creating a parameterized
sphere as a tensor product.

Start with the circle in the x-y plane:

x1 = sinθ
y1 = cosθ

And the semi-circle in the x-z plane:

x2 = sinφ
z2 = cosφ

Now we loft the first circle along the second curve by keeping z2 and modulating
< x1, y1 > by x2.

x = sinφ sinθ
y = sinφ cosθ
z = cosφ

Now, we know that transforming the control points will correspondingly trans-
form the underlying curve. Therefore, we can perform the same lofting operation
on the control points of two curves, Q(u) and Q(v). If we loft curve Q(u) along
Q(v) we get:

x = Qx(v)Qx(u)
Qw(v)Qw(u)

y = Qx(v)Qy(u)
Qw(v)Qw(u)

z = Qz(v)
Qw(v)

where Qx is the x component of curve Q.

6

Converting back to homogeneous coordinates:

x = Qx(v)Qx(u)
y = Qx(v)Qy(u)
z = Qz(v)Qw(u)
w = Qw(v)Qw(u)

which is similar to the previous sphere example when the w components are set
to 1.

So, in order to make a NURBS surface, we can simply take two NURBS curves
and loft one along the other. This basically amounts to taking the tensor product
of the two curves (multiplying the appropriate control vertices together). Now
we can model in 3D.

7

