Probabilistic Graphical Models

Lecture 1 - Introduction

CS/CNS/EE 155

Andreas Krause

One of the most exciting advances in machine learning (AI, signal processing, coding, control, ...) in the last decades

How can we gain global insight based on local observations?

Key idea:

- Represent the world as a collection of random variables $\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}$ with joint distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
- Learn the distribution from data
- Perform "inference" (compute conditional distributions $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}=\mathrm{x}_{\mathrm{m}}\right)$

Applications

Natural Language Processing

Speech recognition

"He ate the cookies on the couch"

- Infer spoken words from audio signals
- "Hidden Markov Models"

Natural language processing

"He ate the cookies on the couch"

Natural language processing

- Need to deal with ambiguity!
- Infer grammatical function from sentence structure
- "Probabilistic Grammars"

Evolutionary biology

[Friedman et al.]

- Reconstruct phylogenetic tree from current species (and their DNA samples)

Applications

Computer Vision

Image denoising

Image denoising

Markov Random Field

$X_{\mathrm{i}}:$ noisy pixels
Y_{i} : "true" pixels

Make3D

- Infer depth from 2D images
- "Conditional random fields"

Applications

State estimation

Robot localization \& mapping

D. Haehnel, W. Burgard, D. Fox, and S. Thrun. IROS-03.

- Infer both location and map from noisy sensor data
- Particle filters

Activity recognition

L. Liao, D. Fox, and H. Kautz. AAAI-04

Predict "goals" from raw GPS data
 "Hierarchical Dynamical
 Bayesian networks"

Significant places
home, work, bus stop, parking lot, friend

Activity sequence
walk, drive, visit, sleep, pickup, get on bus
GPS trace
association to street map

Traffic monitoring

Cars as a sensor network

 [Krause, Horvitz et al.]

- (Normalized) speeds as random variables
- Joint distribution allows modeling correlations
- Can predict unmonitored speeds from monitored speeds using $\mathbf{P}\left(\mathbf{S}_{\mathbf{5}} \mid \mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{9}}\right)$

Applications

Structure Prediction

Collaborative Filtering and Link Prediction

People you may know
L. Brouwer
T. Riley
invite | \times
invite | \times

See more»

Browse DVDs	Watch Instantly	Your Queue	Movies You'll

Your Recent History (What's this?)

Recently Viewed Items

Probabilistic
Graphical Models: Principles and... by Daphne Koller

Continue shopping: Customers Who Bought Items in Your Recent History Also Bought

- Predict "missing links", ratings...
- "Collective matrix factorization", Relational models

Analyzing fMRI data

- Predict activation patterns for nouns
- Predict connectivity (Pittsburgh Brain Competition)

Other applications

- Coding (LDPC codes, ...)
- Medical diagnosis
- Identifying gene regulatory networks
- Distributed control
- Computer music
- Probabilistic logic
- Graphical games
-

MANY MORE!!

Key challenges:

How do we

... represent such probabilistic models?
(distributions over vectors, maps, shapes, trees, graphs, functions...)
... perform inference in such models?
... learn such models from data?

Syllabus overview

- We will study Representation, Inference \& Learning
- First in the simplest case
- Only discrete variables
- Fully observed models
- Exact inference \& learning
- Then generalize
- Continuous distributions
- Partially observed models (hidden variables)
- Approximate inference \& learning
- Learn about algorithms, theory \& applications

Overview

- Course webpage
- http://www.cs.caltech.edu/courses/cs155/
- Teaching assistant: Pete Trautman (trautman@cds.caltech.edu)
- Administrative assistant: Sheri Garcia (sheri@cs.caltech.edu)

Background \& Prerequisites

- Basic probability and statistics
- Algorithms
- CS 156a or permission by instructor
- Please fill out the questionnaire about background (not graded ©)
- Programming assignments in MATLAB.
- Do we need a MATLAB review recitation? Na .

Coursework

- Grading based on
- 4 homework assignments (one per topic) (40\%)
- Course project (40\%)
- Final take home exam (20\%)
- 3 late days
- Discussing assignments allowed, but everybody must turn in their own solutions
- Start early! ©

Course project

- "Get your hands dirty" with the course material
- Implement an algorithm from the course or a paper you read and apply it to some data set
- Ideas on the course website (soon)
- Application of techniques you learnt to your own research is encouraged
- Must be something new (e.g., not work done last term)

Project: Timeline and grading

- Small groups (2-3 students)
- October 19: Project proposals due (1-2 pages); feedback by instructor and TA
- November 9: Project milestone
- December 4: Project report due; poster session
- Grading based on quality of poster (20\%), milestone report (20\%) and final report (60\%)

Review: Probability

- This should be familiar to you...
- Probability Space (Ω, F, P)
- Ω : set of "atomic events"
- $\mathrm{F} \subseteq 2^{\Omega}$: set of all (non-atomic) events $\quad \Omega \backslash \alpha \in F$

F is a σ-Algebra
(closed under complements and countable unions)

- $\mathrm{P}: \mathrm{F} \rightarrow[0,1]$ probability measure

For $\omega \in \mathrm{F}, \mathrm{P}(\omega)$ is the probability that event ω happens

Interpretation of probabilities

- Philosophical debate..
- Frequentist interpretation
- $\mathrm{P}(\alpha)$ is relative frequency of α in repeated experiments
- Often difficult to assess with limited data
- Bayesian interpretation
- $\mathrm{P}(\alpha)$ is "degree of belief" that α will occur
- Where does this belief come from?
- Many different flavors (subjective, pragmatic, ...)
- Most techniques in this class can be interpreted either way.

Independence of events

- Two events $\alpha, \beta \in \mathrm{F}$ are independent if

$$
P(\alpha \cap \beta)=P(\alpha) P(\beta)
$$

- A collection S of events is independent, if for any subset $\alpha_{1}, \ldots, \alpha_{n} \in \mathrm{~S}$ it holds that

$$
P\left(\alpha_{1}, \ldots \alpha_{n}\right)=P\left(\alpha_{1}\right) P\left(\alpha_{2}\right) \cdot \ldots \cdot P\left(\alpha_{n}\right)
$$

Q. $\forall i_{i, \delta}=P\left(\alpha_{i} n \alpha_{j}\right)=P\left(\alpha_{i}\right) P\left(\alpha_{j}\right) \quad N_{0 .}$

Conditional probability

- Let α, β be events, $\mathrm{P}(\beta)>0$
- Then:

$$
P(\alpha \mid \beta)=\frac{P(\alpha \cap \beta)}{P(\beta)}
$$

Most important rule \#1:

- Let $\alpha_{1}, \ldots, \alpha_{n}$ be events, $\mathrm{P}\left(\alpha_{i}\right)>0$
- Then

$$
P\left(\alpha_{1} \ldots \ldots \cap \alpha \alpha_{m}\right)=P\left(\alpha_{1}\right) \cdot P\left(\alpha_{2} \mid \alpha_{1}\right) \cdot \ldots \cdot P\left(\alpha_{m} \mid \alpha_{1 \ldots \alpha_{n-1}}\right)
$$

Chain rule

Most important rule \#2:

- Let α, β be events with prob. $\mathrm{P}(\alpha)>0, \mathrm{P}(\beta)>0$
- Then

$$
\begin{aligned}
& P(\alpha \mid \beta)=\frac{P(\alpha \cap \beta)}{P(\beta)}=\frac{P(\beta \mid \alpha) \cdot P(\alpha)}{P(\beta)} \\
& P(\beta)=P(\beta \mid \alpha) \cdot P(\alpha)+P(\beta / ح \alpha) \cdot P(\neg \alpha)
\end{aligned}
$$

Bayes 'vale

Random variables

- Events are cumbersome to work with.
- Let D be some set (e.g., the integers)
- A random variable X is a mapping $\mathrm{X}: \Omega \rightarrow \mathrm{D}$
- For some $x \in D$, we say

$$
P(X=x)=P(\{\omega \in \Omega: X(\omega)=x\})
$$

"probability that variable X assumes state x "

- Notation: $\operatorname{Val}(X)=$ set D of all values assumed by X.

Examples

- Bernoulli distribution: "(biased) coin flips"

$$
D=\{H, T\}
$$

Specify $P(X=H)=p$. Then $P(X=T)=1-p$.
Write: $\mathrm{X}^{\sim} \operatorname{Ber}(\mathrm{p})$;

- Multinomial distribution: "(biased) m-sided dice"

$$
D=\{1, \ldots, m\}
$$

Specify $P(X=i)=p_{i}$, s.t. $\sum_{t} p_{i}=1$
Write: $\mathrm{X} \sim \operatorname{Mult}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$

Multivariate distributions

- Instead of random variable, have random vector

$$
\mathbf{X}(\omega)=\left[X_{1}(\omega), \ldots, X_{n}(\omega)\right]
$$

- Specify $\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}\right)$
- Suppose all X_{i} are Bernoulli variables.
- How many parameters do we need to specify?

$$
\begin{array}{ccccc|cc}
x_{1} & x_{2} & \cdots & -x_{n} & P\left(x_{1} \ldots x_{n}\right) & \\
0 & 0 & & 0 & ? & 2^{n}-1 \\
0 & & 0 & 1 & ? & &
\end{array}
$$

Rules for random variables

- Chain rule

$$
P\left(x_{1} \ldots x_{m}\right)=P\left(x_{1}\right) P\left(x _ { 2 } (x _ { 1 }) \ldots P \left(x_{n}\left(x_{1} \ldots x_{n-1}\right)\right.\right.
$$

- Bayes' rule

$$
P(x \mid y)=\frac{P(Y \mid x) P(y)}{P(y)}
$$

How do we get $P(y)$?

Marginal distributions

- Suppose, X and Y are RVs with distribution $P(X, Y)$
X : Intelligence
y = Grade

$X X$	$U H$	H
A	0.7	0.15
B	0.1	0.05

$$
P(\text { Grade }-A)=.85
$$

Marginal distributions

- Suppose we have joint distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
- Then

$$
P\left(X_{i}=x_{i}\right)=\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{i=1}} \sum_{x_{i=1}} \ldots \sum_{x_{m}} P\left(x_{1}, \ldots, x_{m}\right)
$$

- If all X_{i} binary: How many terms? 2^{n-1}

Independent RVs

- What if RV s are independent?

RVs X_{1}, \ldots, X_{n} are independent, if for any assignment

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(x_{1}\right) P\left(x_{2}\right) \ldots P\left(x_{n}\right)
$$

$$
\Leftrightarrow\left\{\omega: x_{i}(\omega)=x_{i}\right\} \quad \forall i, x_{i} \in \operatorname{Val}\left(X_{i}\right) \text { indel. }
$$

- How many parameters are needed in this case? n

$$
x_{i} x_{j} \text { idep } \Rightarrow P\left(x_{i}\left(x_{j}\right)=P\left(x_{i}\right) \quad n \ll 2^{n}\right.
$$

- Independence too strong assumption... Is there something weaker?

Key concept: Conditional independence

- Events α, β conditionally independent given γ if

$$
P(\alpha \cap \beta \mid \gamma)=P(\alpha \mid \gamma) P(\beta \mid \gamma)
$$

- Random variables X and Y cond. indep. given Z if for all $x \in \operatorname{Val}(X), y \in \operatorname{Val}(Y), Z \in \operatorname{Val}(Z)$

$$
P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)
$$

- If $P(Y=y \mid Z=z)>0$, that's equivalent to

$$
P(X=x \mid Z=z, Y=y)=P(X=x \mid Z=z)
$$

Similarly for sets of random variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
We write: $\mathrm{P} \vDash \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$

Why is conditional independence useful?

- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$ How many parameters?

$$
\begin{aligned}
& \text { many parameters? } \\
& 2^{0}+2^{\prime}+2^{2}+\ldots+2^{n-1}=2^{n}-2^{n-1}
\end{aligned}
$$

- Now suppose $X_{1} \ldots X_{i-1} \perp X_{i+1} \ldots X_{n} \mid X_{i}$ for all i Then

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n}\right)=P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdot P\left(x_{2} \mid x_{2}\right) \cdot \ldots \cdot P\left(X_{n}\left(x_{m-1}\right)\right. \\
& 2 n-1 \ll 2^{n}
\end{aligned}
$$

How many parameters? Exponential reduction in \#ौ earns

- Can we compute $P\left(X_{n}\right)$ more efficiently? Yes (offal)

Properties of Conditional Independence

- Symmetry
- $X \perp Y|Z \Rightarrow Y \perp X| Z$
- Decomposition
- $X \perp Y, W|Z \Rightarrow X \perp Y| Z$
- Contraction "(nverse Deconposition"
- $(X \perp Y \mid Z) \wedge(X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$
- Weak union
- $X \perp Y, W|Z \Rightarrow X \perp Y| Z, W$
- Intersection
- $(X \perp Y \mid Z, W) \wedge(X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$
- Holds only if distribution is positive, i.e., $\mathrm{P}>0$

Key questions

- How do we specify distributions that satisfy particular independence properties?
\rightarrow Representation
- How can we exploit independence properties for efficient computation?
\rightarrow Inference
- How can we identify independence properties present in data?
\rightarrow Learning

Will now see examples: Bayesian Networks

Bayesian networks

- A powerful class of probabilistic graphical models
- Compact parametrization of high-dimensional distributions
- In many cases, efficient exact inference possible
- Many applications
- Natural language processing
- State estimation
- Link prediction
- Demo..

Key idea

- Conditional parametrization (instead of joint parametrization)
- For each RV, specify $P\left(X_{i} \mid X_{A}\right)$ for set X_{A} of RVs
- Then use chain rule to get joint parametrization
- Have to be careful to guarantee legal distribution...

Example: 2 variables

Example: 3 variables

Example: Naïve Bayes models

- Class variable Y
- Evidence variables X_{1}, \ldots, X_{n}
- Assume that $X_{A} \perp X_{B} \mid Y$ for all subsets X_{A}, X_{B} of $\left\{X_{1}, \ldots, X_{n}\right\}$
- Conditional parametrization:
- Specify P(Y)
- Specify $P\left(X_{i} \mid Y\right)$
- Joint distribution

$$
P\left(x_{1}, \ldots x_{n}, y\right)=P(y) \prod_{i} P\left(x_{i} \mid y\right)
$$

What you need to know

- Basic probability
- Independence and conditional independence
- Chain rule \& Bayes' rule
- Naïve Bayes models

Tasks

- By tomorrow (October 1, 4pm): hand in questionnaire about background to Sheri Garcia
- Read Chapter 2 in Koller \& Friedman
- Start thinking about project teams and ideas (proposals due October 19)

