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One of the most exciting advances in 

machine learning (AI, signal processing, 

coding, control, …) in the last decades
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How can we gain

global insight based on

local observations?
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Key idea:
Represent the world as a collection of random 

variables X1, … Xn with joint distribution P(X1,…,Xn)

Learn the distribution from data

Perform “inference” (compute conditional 

distributions P(Xi | X1 = x1, …, Xm = xm)
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Applications

Natural Language Processing

5



6

Speech recognition

Infer spoken words from audio signals

“Hidden Markov Models”
6

Y1 Y2 Y3 Y4 Y5 Y6
Phoneme

X1 X2 X3 X4 X5 X6
Words

“He ate the cookies on the couch”
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Natural language processing

7

“He ate the cookies on the couch”

X1 X2 X3 X4 X5 X6 X7
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Natural language processing

Need to deal with ambiguity!

Infer grammatical function from sentence structure

“Probabilistic Grammars” 8

“He ate the cookies on the couch”

X1 X2 X3 X4 X5 X6 X7
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Evolutionary biology

Reconstruct phylogenetic tree from current species 

(and their DNA samples)

9

ACCGTA.. CCGAA.. CCGTA.. GCGGCT.. GCAATT.. GCAGTT..

[Friedman et al.]
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Applications

Computer Vision

10



1111

Image denoising
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Image denoising
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Markov Random Field

Xi: noisy pixels

Yi: “true” pixels
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Make3D

Infer depth from 2D images

“Conditional random fields”

13
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Applications

State estimation

14
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Robot localization & mapping

15

Infer both location and map from noisy sensor data

Particle filters

D. Haehnel, 

W. Burgard, 

D. Fox, and 

S. Thrun. 

IROS-03. 
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Activity recognition

16

Predict “goals” from raw GPS data

“Hierarchical Dynamical 

Bayesian networks”

L. Liao, D. Fox, and H. Kautz. AAAI-04
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Traffic monitoring

Deployed

sensors,

high accuracy

speed data

What about

148th Ave?

How can we get accurate road speed 

estimates everywhere?

Detector loops

Traffic cameras
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Cars as a sensor network
[Krause, Horvitz et al.]

(Normalized) speeds 

as random variables

Joint distribution 

allows modeling 

correlations

Can predict 

unmonitored

speeds from 

monitored speeds 

using P(S5 | S1, S9)
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Applications

Structure Prediction

19
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Collaborative Filtering and Link Prediction

Predict “missing links”, ratings…

“Collective matrix factorization”, Relational models
20

L. Brouwer

T. Riley
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Analyzing fMRI data

Predict activation 

patterns for nouns

Predict connectivity

(Pittsburgh Brain 

Competition)

21

Mitchell et al.,

Science, 2008
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Other applications
Coding (LDPC codes, …)

Medical diagnosis

Identifying gene regulatory networks

Distributed control

Computer music

Probabilistic logic

Graphical games

….

MANY MORE!!
22
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Key challenges:

How do we

… represent such probabilistic models?

(distributions over vectors, maps, shapes,   

trees, graphs, functions…)

… perform inference in such models?

… learn such models from data?

23
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Syllabus overview
We will study Representation, Inference & Learning

First in the simplest case

Only discrete variables

Fully observed models

Exact inference & learning

Then generalize

Continuous distributions

Partially observed models (hidden variables)

Approximate inference & learning

Learn about algorithms, theory & applications

24
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Overview
Course webpage

http://www.cs.caltech.edu/courses/cs155/

Teaching assistant: Pete Trautman

(trautman@cds.caltech.edu)

Administrative assistant: Sheri Garcia

(sheri@cs.caltech.edu)
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Background & Prerequisites
Basic probability and statistics

Algorithms

CS 156a or permission by instructor

Please fill out the questionnaire about background 

(not graded ☺ )

Programming assignments in MATLAB.

Do we need a MATLAB review recitation?
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Coursework
Grading based on

4 homework assignments (one per topic) (40%)

Course project (40%)

Final take home exam (20%)

3 late days

Discussing assignments allowed, but everybody must 

turn in their own solutions

Start early! ☺
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Course project

“Get your hands dirty” with the course material

Implement an algorithm from the course or a paper you 

read and apply it to some data set

Ideas on the course website (soon)

Application of techniques you learnt to your own 

research is encouraged

Must be something new (e.g., not work done last term)
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Project: Timeline and grading
Small groups (2-3 students)

October 19: Project proposals due (1-2 pages); 

feedback by instructor and TA

November 9: Project milestone

December 4: Project report due; poster session

Grading based on quality of poster (20%), milestone 

report (20%) and final report (60%)
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Review: Probability
This should be familiar to you…

Probability Space (Ω, F, P)

Ω: set of “atomic events”

F ⊆ 2Ω: set of all (non-atomic) events

F is a σ-Algebra 

(closed under complements and countable unions)

P: F→ [0,1]  probability measure

For ω ∈ F, P(ω) is the probability that event ω happens
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Interpretation of probabilities
Philosophical debate..

Frequentist interpretation

P(α) is relative frequency of α in repeated experiments

Often difficult to assess with limited data

Bayesian interpretation

P(α) is “degree of belief” that α will occur

Where does this belief come from?

Many different flavors (subjective, pragmatic, …)

Most techniques in this class can be interpreted either 
way.
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Independence of events
Two events α,β ∈ F are independent if

A collection S of events is independent, if for any 

subset α,…,αn ∈ S it holds that

33
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Conditional probability
Let α, β be events, P(β)>0

Then:
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Most important rule #1:
Let α,…,αn be events, P(αi)>0

Then 
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Most important rule #2:
Let α, β be events with prob. P(α) > 0, P(β) > 0

Then

P(α | β) = 
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Random variables
Events are cumbersome to work with.

Let D be some set (e.g., the integers)

A random variable X is a mapping   X: Ω→ D

For some x ∈ D, we say

P(X = x) = P({ω ∈Ω: X(ω) = x})

“probability that variable X assumes state x”

Notation: Val(X) = set D of all values assumed by X.

37
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Examples
Bernoulli distribution: “(biased) coin flips”

D = {H,T}

Specify P(X = H) = p.  Then P(X = T) = 1-p.

Write: X ~ Ber(p);

Multinomial distribution: “(biased) m-sided dice”

D = {1,…,m}

Specify P(X = i) = pi, s.t. ∑ι pi = 1

Write: X ~ Mult(p1,…,pm)

38
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Multivariate distributions
Instead of random variable, have random vector

X(ω) = [X1(ω),…,Xn(ω)]

Specify P(X1=x1,…,Xn=xn)

Suppose all Xi are Bernoulli variables.

How many parameters do we need to specify?

39
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Rules for random variables
Chain rule

Bayes’ rule
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Marginal distributions
Suppose, X and Y are RVs with distribution P(X,Y)



42

Marginal distributions
Suppose we have joint distribution P(X1,…,Xn)

Then

If all Xi binary:  How many terms?

42
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Independent RVs
What if RVs are independent?

RVs X1,…,Xn are independent, if for any assignment

P(X1=x1,…,Xn=xn) = P(x1) P(x2) … P(xn)

How many parameters are needed in this case?

Independence too strong assumption… Is there 

something weaker?
43
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Key concept: Conditional independence

Events α, β conditionally independent given γ if

Random variables X and Y cond. indep. given Z if

for all x∈ Val(X), y∈ Val(Y), Z∈ Val(Z)

P(X = x, Y = y | Z = z) = P(X =x | Z = z) P(Y = y| Z= z)

If P(Y=y |Z=z)>0, that’s equivalent to

P(X = x | Z = z, Y = y) = P(X = x | Z = z)

Similarly for sets of random variables X, Y, Z

We write:  P � X⊥ Y | Z
44
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Why is conditional independence useful?
P(X1,…,Xn) = P(X1) P(X2 | X1) … P(Xn | X1,…,Xn-1)

How many parameters?

Now suppose   X1 …Xi-1 ⊥ Xi+1… Xn | Xi for all i

Then

P(X1,…,Xn) =

How many parameters?

Can we compute P(Xn) more efficiently?
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Properties of Conditional Independence

Symmetry

X ⊥ Y | Z ⇒ Y ⊥ X | Z

Decomposition

X ⊥ Y,W | Z ⇒ X ⊥ Y | Z

Contraction

(X ⊥ Y | Z) Æ (X ⊥W | Y,Z) ⇒ X ⊥ Y,W | Z

Weak union

X ⊥ Y,W | Z ⇒ X ⊥ Y | Z,W

Intersection

(X ⊥ Y | Z,W) Æ (X ⊥W | Y,Z) ⇒ X ⊥ Y,W | Z

Holds only if distribution is positive, i.e., P>0
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Key questions
How do we specify distributions that satisfy particular 

independence properties?

� Representation

How can we exploit independence properties for 

efficient computation?

� Inference

How can we identify independence properties 

present in data?

� Learning

Will now see examples:  Bayesian Networks



48

Bayesian networks
A powerful class of probabilistic graphical models

Compact parametrization of high-dimensional 

distributions

In many cases, efficient exact inference possible

Many applications

Natural language processing

State estimation

Link prediction

…

Demo..
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Key idea
Conditional parametrization

(instead of joint parametrization)

For each RV, specify P(Xi | XA) for set XA of RVs

Then use chain rule to get joint parametrization

Have to be careful to guarantee legal distribution…
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Example: 2 variables
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Example: 3 variables
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Example: Naïve Bayes models
Class variable Y

Evidence variables X1,…,Xn

Assume that XA⊥ XB | Y 

for all subsets XA,XB of {X1,…,Xn}

Conditional parametrization:

Specify P(Y)

Specify P(Xi | Y)

Joint distribution 
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What you need to know
Basic probability

Independence and conditional independence

Chain rule & Bayes’ rule

Naïve Bayes models

53



5454

Tasks
By tomorrow (October 1, 4pm): hand in questionnaire 

about background to Sheri Garcia

Read Chapter 2 in Koller & Friedman

Start thinking about project teams and ideas 

(proposals due October 19)


