Probabilistic
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One of the most exciting advances in
machine learning (Al, signal processing,
coding, control, ...) in the last decades



How can we gain
global insight based on
local observations?



¢ Represent the world as a collection of random
variables X, ... X, with joint distribution P(Xy,...,X.)

@ Learn the distribution from data

® Perform “inference” (compute conditional
distributions P(X | X; =Xy, ..., X, = X..)



Applications

Natural Language Processing



Speech recognition

"~ “He ate the cookies on the couch”

® Infer spoken words from audio signals
¢ “Hidden Markov Models”



Natural language processing
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“He ate the cookies on the couch”




Natural language processing
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\\\ “He ate the cookies on the couch”

¢ Need to deal with ambiguity!
® Infer grammatical function from sentence structure
® “Probabilistic Grammars” g



Evolutionary biology

[Friedman et al.]

ACCGTA.. CCGAA.. CCGTA.. GCGGCT.. GCAATT.. GCAGTT..

® Reconstruct phylogenetic tree from current species
(and their DNA samples)



Applications

Computer Vision
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Image denoising
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Image denoising

Markov Random Field
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Saxena et al, PAMI ‘08

¢ Infer depth from 2D images
@ “Conditional random fields”
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Applications

State estimation
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Robot localization & mapping

D. Haehnel,
W. Burgard,
D. Fox, and
S. Thrun.
IROS-03.

¢ Infer both location and map from noisy sensor data

® Particle filters .



goal-prediction. avi

Activity recognition

L. Liao, D. Fox, and H. Kautz. AAAI-04

Predict “goals” from raw GPS data
“Hierarchical Dynamical
Bayesian networks”

Significant places
home, work, bus stop, parking lot, friend

Activity sequence
walk, drive, visit, sleep, pickup, get on bus

GPS trace

association to street map



Traffic monitoring
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Cars as a sensor network

[Krause, Horvitz et al.]
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Applications

Structure Prediction
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Collaborative Filtering and Link Prediction

invite | X Browse Watch Your Movies
L. Brouwer DVDs Instantly | Queue You'll @
Suggestions (731) Rate Movies Taste Preferences
T Rlley invite |
Suggestions in All Genres v
See more »
Your Recent History (what's this?)
Recently Viewed Items ' Continue shopping: Customers Who
Probabilistic Bought Items in Your Recent History
Graphical Models: . Also Bought
Principles and...
by Daphne Koller . 1

® Predict “missing links”, ratings...

@ “Collective matrix factorization”, Relational models N



o Mitchell et al.,
S TEA Science, 2008

Analyzing fMRI data

® Predict activation
patterns for nouns

® Predict connectivity
(Pittsburgh Brain
Competition)
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Other applications

® Coding (LDPC codes, ...)

¢ Medical diagnosis

® |dentifying gene regulatory networks
@ Distributed control

® Computer music

¢ Probabilistic logic

® Graphical games

MANY MORE!!

‘ LN
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Key challenges:

How do we
... represent such probabilistic models?

(distributions over vectors, maps, shapes,
trees, graphs, functions...)

... perform inference in such models?
... learn such models from data?

23



Syllabus overview

* We will study Representation, Inference & Learning

_—

® First in the simplest case

® Only discrete variables

——

® Fully observed models
* Exact inference & learning

® Then generalize

o anh%ggs distributions

* Partially observed models (hidden variables)
* Approximate inference & learning

¢ Learn about algorithms, theory & applications
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Overview

® Course webpage
¢ http://www.cs.caltech.edu/courses/cs155/

o

® Teaching assistant: Pete Trautman
(trautman@cds.caltech.edu)

@ Administrative assistant: Sheri Garcia
(sheri@cs.caltech.edu)
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Background & Prerequisites

® Basic probability and statistics

® Algorithms
@ CS 156a or permission by instructor

¢ Please fill out the questionnaire about background
(not graded © )

@ Programming assignments in MATLAB.
» Do we need a MATLAB review recitation? /\2.
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Coursework

® Grading based on
® 4 homework assignments (one per topic) (40%)
® Course project (40%)
® Final take home exam (20%)

¢ 3 |ate days
e

® Discussing assignments allowed, but everybody must
turn in their own solutions

° Startearly! © |1

=
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Course project

* “Get your hands dirty” with the course material

¢ Implement an algorithm from the course or a paper you
read and apply it to some data set

® |deas on the course website (soon)

@ Application of techniques you learnt to your own
research is encouraged

® Must be something new (e.g., not work done last term)
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Project: Timeline and grading
@ Small groups (2-3 students)

® QOctober 19: Project proposals due (1-2 pages);

e ——

feedback by instructor and TA
® November 9: Project milestone

-

® December 4: Project report due; poster session

® Grading based on quality of poster (20%), milestone
report (20%) and final report (60%)
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Review: Probability

@ This should be familiar to you...

* Probability Space (2, F, P)

* (:set of “atomic events” Je F
¢ F C 2%: set of all (non-atomic) events S\w €F

Fis a o-Algebra
(closed under complements and countable unions)

® P: F— [0,1] probability measure
For w € F, P(w) is the probability that event w happens
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Interpretation of probabilities

® Philosophical debate..

¢ Frequentist interpretation
® P(«) is relative frequency of « in repeated experiments
@ Often difficult to assess with limited data

@ Bayesian interpretation
® P(«) is “degree of belief” that o will occur
® Where does this belief come from?
* Many different flavors (subjective, pragmatic, ...)

® Most techniques in this class can be interpreted either
way.
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Independence of events

® Two events o, € F are independent if

Pl n ) = P PB

@ A collection S of events is independent, if for any
subset o, ...,a, € Sit holds that

Pl o o) = P(L) PRLY - ... 'P@(m}

&" V/:cd: d
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Conditional probability

® Let o, 0 be events, P(3)>0

@ Then:

34



Most important rule #1:

° let o ,...,, be events, P(a,)>0

@ Then
D, .. A%ed,) = PEY P, o) - -%Jo&l,,,&hb

o Tu{e
(hoir e
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Most important rule #2:

° Let o, B be events with prob. P(c) >0, P(5) >0
® Then
Pap) _ PB1Y)-PE
Plpl= Fm " T pm
W= PRI + PP CH

Bﬂaa(/? (V’AEQ,
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Random variables

@ Events are cumbersome to work with.

® Let D be some set (e.g., the integers)
¢ A random variable X is a mapping X: Q — D
@ For some x € D, we say

P(X = x) = P({w € Q: X(w) = x})

“probability that variable X assumes state x”

® Notation: Val(X) = set D of all values assumed by X.
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¢ Bernoulli distribution: “(biased) coin flips”
D={H,T}
Specify P(X=H) =p. ThenP(X=T) = 1-p.
Write: X ~ Ber(p);

® Multinomial distribution: “(biased) m-sided dice”
D={1,... m}

Specify P(X=i)=p, s.t. 2. p, =1
Write: X ~ Mult(p,...,p)
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Multivariate distributions

¢ |Instead of random variable, have random vector
X(w) = [Xy(w), ..., X (w)]

® Specify P(X;=x4,...,X,=X,)

@ Suppose all X; are Bernoulli variables.
® How many parameters do we need to specify?

K Ky e K| Pl
5 ol g e
D o[ O
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Rules for random variables

@ Chain rule

Plxe o ) = PO PLFlK) - BRI KL)

¢ Bayes’ rule

P(yI) P
P<lY) = P(Y)

/!
l‘faw c‘o e ?r(ﬂL P[y7%
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Marginal distributions

® Suppose, X and Y are RVs with distribution P(X,Y)

X : (h\l-c,((t"y’\ce
y o Crvode

Vi | B
%&%_;75 PlGud7A) = . F5
B

0. ( 0,0?
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Marginal distributions

® Suppose we have joint distribution P(X,,...,X,)
¢ Then

P(X;=z;)= 2 & ¢l gl i Plx, - %)

X Xo X el )4‘\

: M|
* If all X; binary: How many terms? 7
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Independent RVs

® What if RVs are independent?

RVs X,,..., X, are independent, if for any assighment
P(X;=Xy,..., X=X, ) = P(x;) P(x,) ... P(x,)

ED {W‘ }(;(“’37 )‘{3 "4 4:, )(;@Va[(yt') [Mc/ep,
® How many parameters are needed in this case?

—

/m<<2‘11

X& Sl/ (Wep = P(/n [ygj - ’Pé%ﬁ)

¢ |Independence too strong assumption... Is there

something weaker?
43



Key concept: Conditional independence

® Events «, B conditionally independent given ~y if

Pldnf Iy = Pl ) PPl

® Random variables X and Y cond. indep. given Z if
for all xe Val(X), ye Val(Y), Z€ Val(Z)

PX=x,Y=y|Z=2)=P(X=x|Z=2z)P(Y=Vy]| Z=2)

° If P(Y=y |Z=2)>0, that’s equivalent to
PX=x|Z=2z,Y=y)=P(X=x|Z=2)
Similarly for sets of random variables X, Y, Z
We write: P EFX LY | Z
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Why is conditional independence useful?
® P(Xy,oee Xg) = PXy) POG | Xg) o (X | Xy X 1)

N
How many parameters? on- |
o ( 1 -l 2
0° «2 w2+, 2 =g
® Now suppose X ..Xi; L Xi,;... X, | X; foralli

Then
P( sWARLY )_ P(S() ’P[}/‘?U( /P(X [X2> P(Y’R[Xnaq)
7

Ton-1 2 97
How many parameters? [;sqmwf ol veduohio i F poms

® Can we compute P(X_) more efficiently? ygs (Flen)
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Properties of Conditional Independence

¢ Symmetry
oX1Y|Z=YLX]|Z

¢ Decomposition
X I1YW]|Z=XL1Y]|Z

¢ Contraction “(avege D4C<>~~{“fV"’L'“ ;
eXLY|DANXLWI|Y,Z)=XLYW]|Z

¢ Weak union
X 1LYW]|Z=XLY|ZW

¢ |Intersection
e(XLY|ZWIAXLWI]Y,Z)=XLYW]|Z

® Holds only if distribution is positive, i.e., P>0
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¢ How do we specify distributions that satisfy particular
independence properties?

=» Representation

® How can we exploit independence properties for
efficient computation?

= Inference

® How can we identify independence properties
present in data?

=» Learning

Will now see examples: Bayesian Networks

47



Bayesian networks

* A powerful class of probabilistic graphical models

® Compact parametrization of high-dimensional
distributions

® In many cases, efficient exact inference possible

® Many applications
® Natural language processing
¢ State estimation
® Link prediction

‘ LN

¢ Demo..
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® Conditional parametrization
(instead of joint parametrization)

® For each RV, specify P(X. | X,) for set X, of RVs
® Then use chain rule to get joint parametrization

® Have to be careful to guarantee legal distribution...
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Example: 2 variables

(D P(L-VH)- 08

l a8
@ P/ T) Y¥os o5
(o6 04 a1
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Example: 3 variables
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Example: Naive Bayes models

@ Class variable Y

® Evidence variables X,,..., X

® Assume that X, L X; | Y
for all subsets X,,Xg of {X,,...,.X..}

® Conditional parametrization:
® Specify P(Y)
® Specify P(X. | Y)

® Joint distribution

Pk, % 5= P(Y) | ’P/H/)
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What you need to know

® Basic probability

¢ Independence and conditional independence

@ Chain rule & Bayes’ rule

¢ Naive Bayes models
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¢ By tomorrow (October 1, 4pm): hand in questionnaire
about background to Sheri Garcia

¢ Read Chapter 2 in Koller & Friedman

¢ Start thinking about project teams and ideas
(proposals due October 19)
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