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Announcements

® Project poster session on Thursday Dec 3, 4-6pm
in Annenberg 2" floor atrium!

® Easels, poster boards and cookies will be provided!

® Final writeup (8 pages NIPS format) due Dec 9
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Approximate inference

Three major classes of general-purpose approaches

Message passing
¢ E.g.: Loopy Belief Propagation (today!)

Inference as optimization

® Approximate posterior distribution by simple distribution
¢ Mean field / structured mean field
¢ Assumed density filtering / expectation propagation

Sampling based inference

® Importance sampling, particle filtering
® Gibbs sampling, MCMC

Many other alternatives (often for special cases)



Sample approximations of expectations

® Xy,...,Xy S@Mples from RV X

—_—

¢ Law of large numbers:

Epl[f(X)] = Jim — 3" f(w:)

¢ Hereby, the convergence is with probability 1
(almost sure convergence)

® Finite samples:
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Monte Carlo sampling from a BN

® Sort variables in topological ordering X, ..., X,

2 Fori=1tondo
® Sample x, ~ P(X; | X;=Xq, ..., X, {=X; 1) :?()( [ ﬁy)

* Works even with high-treewidth models! (¢



Computing probabilities through sampling

¢ Want to estimate probabilities (¢c)
® Draw N samples from BN

ORO
® Marginals (6) (s)
’P(H:ZS;" P FIH"QJ i ? ‘P(’C) .(IH:Z (x),X X 0
ot 1, (9) . B
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® Conditionals
Plost ool PR H) - ot okt
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® Rejection sampling problematic for rare events




Sampling from intractable distributions

M . . . . t d j/ <
® Given unnormalized distribution n (%™ k) o ' 1% % )

P(X) oc Q(X) = PX ¢ Koge > X°'°S>
¢ Q(X) efficient to evaluate, but normalizer intractable
® For example, Q(X) = H-! (C)

® Want to sample from P(X) = %&(“y

® Ingenious idea:
Can create Markov chain that is efficient to simulate
and that has stationary distribution P(X)



Markov Chain Monte Carlo

® Given an unnormalized distribution Q(x)

¢ Want to desigh a Markov chain with stationary
distribution

m(x) = 1/Z Q(x)
® Need to specify transition probabilities P(x | x’)!



Designing Markov Chains

1) Proposal distribution R(X" | X)

® Given X, = x, sample “proposal” xX’*R(X’ | X=x)

® Performance of algorithm will strongly depend on R
2) Acceptance distribution:
® Suppose X, = X

/ /
® With probability o = min {1, Qlz )R(.:z:/ | 2') }
set X,,; =X Q(z)R(z" | z)

¢ With probability 1-c, set X,; = x

Theorem [Metropolis, Hastings]: The stationary
distribution is Z1 Q(x)
® Proof: Markov chain satisfies detailed balance condition! 9



Gibbs sampling

* Start with initial assignment x!% to all variables
®Fort=1tooodo
@ Set x(t) = x(t-1)

® For each variable X
* Set v; = values of all x*) except x;

* Sample x{t). from P(X. | v)

® Gibbs sampling satisfies detailed balance
equation for P

® Can efficiently compute conditional
distributions P(X. | v.) for graphical models
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Summary of Sampling

¢ Randomized approximate inference for computing
expections, (conditional) probabilities, etc.

® Exact in the limit
® But may need ridiculously many samples

® Can even directly sample from intractable distributions
® Disguise distribution as stationary distribution of Markov Chain
® Famous example: Gibbs sampling
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Summary of approximate inference

® Deterministic and randomized approaches

@ Deterministic
® Loopy BP
® Mean field inference
® Assumed density filtering

® Randomized
® Forward sampling
® Markov Chain Monte Carlo
® Gibbs Sampling
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Recall: The “light” side

® Assumed
¢ everything fully observable

* |ow treewidth
® no hidden variables

® Then everything is nice ©
® Efficient exact inference in large models
® Optimal parameter estimation without local minima
® Can even solve some structure learning tasks exactly
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The “dark” sid

Irepresent

States of the world, i AR " — o e e
sensor measurements, ... Graphical model

® |n the real world, these assumptions are often
violated..

¢ Still want to use graphical models to solve interesting
problems..
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Remaining Challenges

® Inference
* Approximate inference for high-treewidth models

@ Learning
® Dealing with missing data

@ Representation
® Dealing with hidden variables
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Learning general BNs

Known structure Unknown structure

Fully observable Easy! Hard

Missing data TdJa?/
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Dealing with missing data

@ So far, have assumed all variables (c)
are observed in each training example

X?i)fq’féwcb%/&*/ /°L',§>£¢~"J @ 0
X -
(&) (s

® |n practice, often have missing data
® Some variables may never be observed m 0

® Missing variables may be different
for each example

X('{):[C_:Lt( S>’(/ l:?l[_c?(-"]
£) >

17



Gaussian Mixture Modeling

k=LY, 2’] @
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Learning with missing data

@ Suppose X is observed variables, Z hidden variables

® Training data: x(1) x(2) . x(N)
* Marginal likelihood: pe T
iy i P = O Y
o\ - ‘I)[Y(ﬂ 0 Aoy
LDy 7 > g fry )

= 8 ey 27(% )
0!

® Marginal likelihood doesn’t decompose
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Intuition: EM Algorithm

® |terative algorithm for parameter learning in case of
missing data
® EM Algorithm

® Expectation Step: “Hallucinate” hidden values

® Maximization Step: Train model as if data were fully
observed

¢ Repeat

® Will converge to local maximum

20



¢ x: observed data; z: hidden data

* “Hallucinate” missing values by computing
distribution over hidden variables using current
parameter estimate:

® For each example xl), compute:

Q(t"'l)(z | x(j)) = P(z | x() H(t))

21



Towards M-step: Jensen inequality

® Marginal likelihood doesn’t decompose

= Z logz P(x\9), z: 0)
7 Z

P

¢ Theorem [Jensen’s inequality]:
For any distribution P(z) and function f(z),

logZP(z >ZP )log f(z
blELten) 2 [z, ¢
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Lower-bounding marginal likelihood
® Jensen’s inequality: logZsz)f(z) > ZP’(z) log f(z)

® From E-step: QU (z | xVU)) = P(z | x19), 9)

ZlogZP (9) 0)

P[/c 9,- 6)
2 -l'l) (J) : A

P [2 z”“’)
') ?()é aﬂ)c?/é)

__:2 g&(ﬂ)[?{zfﬁ)%;p(zuz?’es 4 H( (*"‘))_M

J
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Lower bound on marginal likelihood

® Bound of marginal likelihood with hidden variables

((x: 0) > (t+1) UN1oe P G) | g H(O{+D)
(i) > 3 3 Qe | x) g Pla x| )+ mE(Q )

¢ Recall: Likelihood in fully observable case:

Gon s

Z log P(x (4) | 0)
I W
° Lower bound interpreted as “weighted” data set
X 2 Q¥ ﬁﬂw obs:

LO(( ,ZJ l q J(“/
o) 2 ’ 6
[s-«] | 3 o
'L\ 5,-40 1 % 4

24



M-step: Maximize lower bound

¢ Lower bound:

(x:0) >SS QU (z | x9) log P(z,xY) | 0) + mH(QUH)

=1 =z

@ Choose 6t*1) to maximize lower bound

pli+l) — argmaxy:S:Q(tH)(z | x9)) log P(z,xY) | 6)
0

=1 =z

¢ Use expected sufficient statistics (counts). Will see:

¢ Whenever we used Count(x,z) in fully observable case,
replace by Eqt+1[Count(x,z)]
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Coordinate Ascent Interpretation

® Define energy function

F[Q,01=) ) Qz|xY)log P(z,x") | ) + mH(Q)

=1 =z

® For any distribution Q and parameters 6:

U(x;0) > FQ, 0

® EM algorithm performs coordinate ascent on F:

Q(t+1) = argmax F'|@Q), H(t)]
Q

9+ = argmax F[QUHY, 6]
0

® Monotonically converges to local maximum
26



EM for Gaussian Mixtures
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EM lterations [by Andrew Moore]
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EM in Bayes Nets

® Complete data likelihood G 9
[(b { é) = S-' X‘(? P(e q)[é) ,P[(o(ﬂ l@) _F(QQ‘),Q) o
J Q

EEURA Ié} F/X{/Pa;)

b!cwfld\"f
Co~ orJ:mf% &qo& CPr }WJG/M/Z -(
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EM in Bayes Nets
® Incomplete data likelihood G @

—

U(D16)= Doy 2 0t P (W ORSS

Does ma’{ JCCOWWO’C Nl

N
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E-Step for BNs

* Need to compute  QUTV(z | x) = P(z | x19), 1)
® For fixed z, x: Can compute using inference

* Naively specifying full distribution would be intractable

o b wse QU %‘Pé'a%g “ (o ereeded )

G,



M-step for BNs

pli+l) — argmaxy:S:Q(tH)(z | x9)) log P(z,xY) | 6)
0

=1 =z
¢ Can optimize each CPT independently!

@ MLE in fully observed case:

~ Count(zx, pa,,)
0x|pax —

Count(pa,,)
¢ MLE with hidden data:

(/9\(t—|—1) _ EQ(t—l—l) [Count(CU, paaz)]
#pa; g4 [Count(pa, )]
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Computing expected counts

é\(t—Fl) _ EQ(t—l—l) [COU.Ilt(ma pax)]
“lPa: ™ 41 [Count(pa, )]

® Suppose we observe O=0

¢ Variables A hidden
Pocds ko A ins Ao, A . A, co A no -p

By [Cot [Aomosc Au2aD)]
"5 Ifaf‘: ] w
To evalide need Yo (’@Jfam ('MIQIW(Q

| (qfeence for oo paint
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Learning general BNs

Known structure Unknown structure

Fully observable Easy! Hard (2.)

Missing data EM Now
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Structure learning with hidden data

® Fully observable case:
® Score(D;G) = likelihood of data under most likely parameters

¢ Decomposes over families
Score(D;G) = 2, FamScore;(X, | Paxi)
¢ Can recompute score efficiently after adding/removing edges

® Incomplete data case:
¢ Score(D;G) = lower bound from EM
® Does not decompose over families
® Search is very expensive

@ Structure-EM: Iterate
¢ Computing of expected counts

¢ Multiple iterations of structure search for fixed counts

® Guaranteed to monotonically improve likelihood score .



Hidden variable discovery

¢ Sometimes, “invention” of a hidden variable can
drastically simplify model

—~ o " “ st Romte
Tt “wmgrdd W)Nf%/b‘ w oodt/ %ﬁ; M%é
X . e Ghuche

s ~}v JHa = (bope )™
/ L\J\w o -dus
a0 6 % O/ DN

o O o

R (o'F C'M‘fg» Comma  effe ch

OO O = 2 |oé/
) S’I\—m\;/ Cmifs o :M{,‘J)ﬂﬂ’)« \'\&
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Learning general BNs

Known structure Unknown structure

Fully observable Easy! Hard (2.)

Missing data EM Structure-EM
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