Probabilistic Graphical Models

Lecture 17 – EM

CS/CNS/EE 155
Andreas Krause

Announcements

- Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2nd floor atrium!
 - Easels, poster boards and cookies will be provided!
- Final writeup (8 pages NIPS format) due Dec 9

Approximate inference

Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

- Approximate posterior distribution by simple distribution
- Mean field / structured mean field
- Assumed density filtering / expectation propagation

Sampling based inference

- Importance sampling, particle filtering
- Gibbs sampling, MCMC
- Many other alternatives (often for special cases)

Sample approximations of expectations

- \bullet $x_1,...,x_N$ samples from RV X
- Law of large numbers:

$$\mathbb{E}_{P}[f(X)] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Hereby, the convergence is with probability 1 (almost sure convergence)
- Finite samples:

$$\mathbb{E}_{P}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Monte Carlo sampling from a BN

- Sort variables in topological ordering X₁,...,X_n
- For i = 1 to n do
 - Sample $x_i \sim P(X_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1}) = P(X_i \mid \mathcal{Z}_{X_i})$

Works even with high-treewidth models! (c)

Computing probabilities through sampling

- Want to estimate probabilities
- Draw N samples from BN
- Marginals

$$P(H=y) = \mathbb{E}_{P}[I_{H=y}] = \sum_{x} P(x) \cdot I_{H=y}(x)$$

$$\approx 15^{N} I_{H>y}(x^{(i)}) = \underbrace{(out(H=y))}_{N=1}$$

Conditionals

$$P(D=h|H=m) = \frac{P(D=h,H=m)}{P(H=m)} = \frac{Count(D=h,H=m)}{Count(H=m)}$$

Rejection sampling

Rejection sampling problematic for rare events

Sampling from intractable distributions

Given unnormalized distribution

$$P(X) \propto Q(X) = P(X_i X_{obs} = X_{obs})$$

- Q(X) efficient to evaluate, but normalizer intractable
- For example, $Q(X) = \prod_j \Psi(C_j)$
- Want to sample from $P(X) = \frac{1}{2}Q(\kappa)$
- Ingenious idea:

Can create Markov chain that is efficient to simulate and that has stationary distribution P(X)

M XA (XB= KB) & P(XA 1XB :XB)

Markov Chain Monte Carlo

- Given an unnormalized distribution Q(x)
- Want to design a Markov chain with stationary distribution

$$\pi(x) = 1/Z Q(x)$$

Need to specify transition probabilities P(x | x')!

Designing Markov Chains

- 1) Proposal distribution R(X' | X)
 - Given $X_t = x$, sample "proposal" $x' \sim R(X' \mid X = x)$
 - Performance of algorithm will strongly depend on R
- 2) Acceptance distribution:
 - Suppose $X_t = x$
 - With probability $\alpha = \min\left\{1, \frac{Q(x')R(x\mid x')}{Q(x)R(x'\mid x)}\right\}$ set $\mathbf{X}_{\mathsf{t+1}} = \mathbf{x}'$
 - With probability 1- α , set $X_{t+1} = X$

Theorem [Metropolis, Hastings]: The stationary distribution is Z^{-1} Q(x)

Proof: Markov chain satisfies detailed balance condition!

Gibbs sampling

- Start with initial assignment $\mathbf{x}^{(0)}$ to all variables
- For t = 1 to ∞ do
 - Set $x^{(t)} = x^{(t-1)}$
 - For each variable X_i
 - Set \mathbf{v}_i = values of all $\mathbf{x}^{(t)}$ except \mathbf{x}_i
 - Sample $x^{(t)}_{i}$ from $P(X_{i} | \mathbf{v}_{i})$
- Gibbs sampling satisfies detailed balance equation for P
- Can efficiently compute conditional distributions $P(X_i | \mathbf{v}_i)$ for graphical models

Summary of Sampling

- Randomized approximate inference for computing expections, (conditional) probabilities, etc.
- Exact in the limit
 - But may need ridiculously many samples
- Can even directly sample from intractable distributions
 - Disguise distribution as stationary distribution of Markov Chain
 - Famous example: Gibbs sampling

Summary of approximate inference

- Deterministic and randomized approaches
- Deterministic
 - Loopy BP
 - Mean field inference
 - Assumed density filtering
- Randomized
 - Forward sampling
 - Markov Chain Monte Carlo
 - Gibbs Sampling

Recall: The "light" side

- Assumed
 - everything fully observable
 - low treewidth
 - no hidden variables
- Then everything is nice
 - Efficient exact inference in large models
 - Optimal parameter estimation without local minima
 - Can even solve some structure learning tasks exactly

The "dark" side

Micrord Micror

States of the world, sensor measurements, ...

Graphical model

- In the real world, these assumptions are often violated..
- Still want to use graphical models to solve interesting problems..

Remaining Challenges

- Inference
 - Approximate inference for high-treewidth models
- Learning
 - Dealing with missing data
- Representation
 - Dealing with hidden variables

Learning general BNs

	Known structure	Unknown structure
Fully observable	Easy!	Hard
Missing data	Today	

Dealing with missing data

 So far, have assumed all variables are observed in each training example

- In practice, often have missing data
 - Some variables may never be observed
 - Missing variables may be different for each example

$$\chi^{(i)} = [C = h, S > 1, 1 = ?, L = ?, ...]$$
 $\chi^{(i)} = [C = h, S > 1, 1 = ?, L = ?, ...]$

Gaussian Mixture Modeling

$$X = \begin{bmatrix} Y_1 & Z \end{bmatrix}$$

$$X^{(1)} = \begin{bmatrix} 0.1, .15, b(ue) \end{bmatrix}$$

$$X^{(2)} = \begin{bmatrix} .2, ..2, b(ue) \end{bmatrix}$$

$$X^{(3)} = \begin{bmatrix} ..2, ..2, b($$

Learning with missing data

- Suppose X is observed variables, Z hidden variables
- Training data: x⁽¹⁾, x⁽²⁾,..., x^(N)
- Marginal likelihood:

$$\ell\left(D_{x};\theta\right) = \sum_{s=1}^{\infty} \log P(x^{(s)};\theta)$$

$$= \sum_{s=1}^{\infty} \log P(x^{(s)};\theta)$$

Marginal likelihood doesn't decompose

Intuition: EM Algorithm

- Iterative algorithm for parameter learning in case of missing data
- EM Algorithm
 - Expectation Step: "Hallucinate" hidden values
 - Maximization Step: Train model as if data were fully observed
 - Repeat
- Will converge to local maximum

E-Step:

- x: observed data; z: hidden data
- "Hallucinate" missing values by computing distribution over hidden variables using current parameter estimate:
- For each example x^(j), compute:

$$Q^{(t+1)}(z \mid \mathbf{x}^{(j)}) = P(z \mid \mathbf{x}^{(j)}, \underline{\theta}^{(t)})$$

Towards M-step: Jensen inequality

Marginal likelihood doesn't decompose

$$\ell(\mathbf{x}; \theta) = \sum_{j} \log \sum_{\mathbf{z}} P(\mathbf{x}^{(j)}, \mathbf{z}; \theta)$$

• Theorem [Jensen's inequality]:
For any distribution P(z) and function f(z),

$$\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$$

$$\log \left(\mathbb{E}_{P}[A(2)] \right)^{-2} \mathbb{E}_{P}[\log f(2)]$$

Lower-bounding marginal likelihood

• Jensen's inequality: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

From E-step:

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}^{(j)}) = P(\mathbf{z} \mid \mathbf{x}^{(j)}, \theta^{(t)})$$

$$\ell(\mathbf{x};\theta) = \sum_{j} \log \sum_{\mathbf{z}} P(\mathbf{x}^{(j)}, \mathbf{z};\theta)$$

$$= \sum_{j} \log \sum_{\mathbf{z}} Q^{(k+1)}(\mathbf{z}|\mathbf{x}^{(j)}) \frac{P(\mathbf{x}^{(j)}, \mathbf{z};\theta)}{Q^{(k+1)}(\mathbf{z}|\mathbf{x}^{(j)};\theta)}$$

$$= \sum_{j} Q^{(k+1)}(\mathbf{z}|\mathbf{x}^{(j)}) \log \frac{P(\mathbf{x}^{(j)}, \mathbf{z};\theta)}{Q^{(k+1)}(\mathbf{z}|\mathbf{x}^{(j)};\theta)}$$

$$= \sum_{j} Q^{(k+1)}(\mathbf{z}|\mathbf{x}^{(j)}) \log P(\mathbf{x}^{(j)}|\mathbf{z};\theta) + H(Q^{(k+1)}) - m$$

Lower bound on marginal likelihood

Bound of marginal likelihood with hidden variables

$$\ell(\mathbf{x}; \theta) \ge \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}^{(j)}) \log P(\mathbf{z}, \mathbf{x}^{(j)} \mid \theta) + mH(Q^{(t+1)})$$

Recall: Likelihood in fully observable case:

$$\ell(\mathbf{x}; \theta) \ge \sum_{j=1}^{m} \log P(\mathbf{x}^{(j)} \mid \theta)$$

Lower-bound interpreted as "weighted" data set

M-step: Maximize lower bound

Lower bound:

$$\ell(\mathbf{x}; \theta) \ge \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}^{(j)}) \log P(\mathbf{z}, \mathbf{x}^{(j)} \mid \theta) + mH(Q^{(t+1)})$$

• Choose $\theta^{(t+1)}$ to maximize lower bound

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}^{(j)}) \log P(\mathbf{z}, \mathbf{x}^{(j)} \mid \theta)$$

- Use expected sufficient statistics (counts). Will see:
 - Whenever we used Count(x,z) in fully observable case, replace by E_{Ot+1}[Count(x,z)]

Coordinate Ascent Interpretation

Define energy function

$$F[Q, \theta] = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}^{(j)}) \log P(\mathbf{z}, \mathbf{x}^{(j)} \mid \theta) + mH(Q)$$

ullet For any distribution Q and parameters θ :

$$\ell(\mathbf{x};\theta) \ge F[Q,\theta]$$

EM algorithm performs coordinate ascent on F:

$$Q^{(t+1)} = \underset{Q}{\operatorname{argmax}} F[Q, \theta^{(t)}]$$
$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} F[Q^{(t+1)}, \theta]$$

Monotonically converges to local maximum

EM for Gaussian Mixtures

$$E - Step \\ Q^{(4+1)}[2 | x^{(3)}]$$

$$= P(2=2|x^{(3)}; 0^{(4)})$$

$$Q^{(1)}(2=1|x=[.1,2]) = .4$$

$$2$$

$$3$$

$$P(2(x) \ge P(x|2)P(2)$$

$$M - Step: M_{i} = \frac{\sum_{j=1}^{i} Q(2-i|x^{(j)}) \cdot x^{(j)}}{\sum_{j=1}^{i} Q(2-i|x^{(j)})}$$

$$\sum_{j=1}^{i} Q(2-i|x^{(j)})$$

$$\sum_{j=1}^{i} Q(2-i|x^{(j)})$$

EM Iterations [by Andrew Moore]

EM in Bayes Nets

Complete data likelihood

$$\mathcal{L}(D; \theta) = \sum_{j} \log_{j} P(e^{(j)}|\theta) \cdot P(b^{(j)}|\theta) \cdot P(a^{(j)}|\theta) \cdot \cdots$$

$$= \sum_{j} \log_{j} TP(X_{i}|Pa_{i})$$

$$= \sum_{j} \sum_{k} \log_{j} P(X_{i}|Pa_{i})$$

EM in Bayes Nets

Incomplete data likelihood

E-Step for BNs

- Need to compute $Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}^{(j)}) = P(\mathbf{z} \mid \mathbf{x}^{(j)}, \theta^{(t)})$
- For fixed z, x: Can compute using inference
- Naively specifying full distribution would be intractable

M-step for BNs

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}^{(j)}) \log P(\mathbf{z}, \mathbf{x}^{(j)} \mid \theta)$$

- Can optimize each CPT independently!
- MLE in fully observed case:

$$\widehat{\theta}_{x|\mathbf{pa}_x} = \frac{\mathrm{Count}(x, \mathbf{pa}_x)}{\mathrm{Count}(\mathbf{pa}_x)}$$

MLE with hidden data:

$$\widehat{\theta}_{x|\mathbf{pa}_x}^{(t+1)} = \frac{\mathbb{E}_{Q^{(t+1)}}[\mathrm{Count}(x, \mathbf{pa}_x)]}{\mathbb{E}_{Q^{(t+1)}}[\mathrm{Count}(\mathbf{pa}_x)]}$$

Computing expected counts

$$\widehat{\theta}_{x|\mathbf{p}\mathbf{a}_{x}}^{(t+1)} = \frac{\mathbb{E}_{Q^{(t+1)}}[\mathrm{Count}(x, \mathbf{p}\mathbf{a}_{x})]}{\mathbb{E}_{Q^{(t+1)}}[\mathrm{Count}(\mathbf{p}\mathbf{a}_{x})]}$$

- Suppose we observe O=o
- Variables A hidden

Learning general BNs

	Known structure	Unknown structure
Fully observable	Easy!	Hard (2.)
Missing data	EM	Now

Structure learning with hidden data

- Fully observable case:
 - Score(D;G) = likelihood of data under most likely parameters
 - Decomposes over families $Score(D;G) = \sum_{t} FamScore_{i}(X_{i} \mid Pa_{X_{i}})$
 - Can recompute score efficiently after adding/removing edges
- Incomplete data case:
 - Score(D;G) = lower bound from EM
 - Does not decompose over families
 - Search is very expensive
- Structure-EM: Iterate
 - Computing of expected counts
 - Multiple iterations of structure search for fixed counts
- Guaranteed to monotonically improve likelihood score

Hidden variable discovery

 Sometimes, "invention" of a hidden variable can drastically simplify model

"Guess "existence of hidden variable 2 we only know about and rem structure Im

>> (hopefully) " recora-Xu ... Km Best fit to Jota: But: Can't identify common effects - Strong limits to identifiabolity

Learning general BNs

	Known structure	Unknown structure
Fully observable	Easy!	Hard (2.)
Missing data	EM	Structure-EM