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Announcements
Project poster session on Thursday Dec 3, 4-6pm

in Annenberg 2nd floor atrium!

Easels, poster boards and cookies will be provided!

Final writeup (8 pages NIPS format) due Dec 9
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization 

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Assumed density filtering / expectation propagation

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Sample approximations of expectations

x1,…,xN samples from RV X

Law of large numbers:

Hereby, the convergence is with probability 1 

(almost sure convergence)

Finite samples:
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Monte Carlo sampling from a BN

Sort variables in topological ordering X1,…,Xn

For i = 1 to n do

Sample xi ~ P(Xi | X1=x1, …, Xi-1=xi-1)

Works even with high-treewidth models! C

D I

G S

L

J

H



6

Computing probabilities through sampling

Want to estimate probabilities

Draw N samples from BN

Marginals

Conditionals

Rejection sampling problematic for rare events 
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Sampling from intractable distributions

Given unnormalized distribution

P(X) ∝ Q(X)

Q(X) efficient to evaluate, but normalizer intractable

For example, Q(X) = ∏j Ψ(Cj)

Want to sample from P(X)

Ingenious idea: 

Can create Markov chain that is efficient to simulate 

and that has stationary distribution P(X)



8

Markov Chain Monte Carlo
Given an unnormalized distribution Q(x)

Want to design a Markov chain with stationary 

distribution

π(x) = 1/Z Q(x)

Need to specify transition probabilities P(x | x’)!
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Designing Markov Chains
1) Proposal distribution R(X’ | X)

Given Xt = x, sample “proposal” x’~R(X’ | X=x)

Performance of algorithm will strongly depend on R

2) Acceptance distribution:

Suppose Xt = x

With probability

set Xt+1 = x’

With probability 1-α, set Xt+1 = x

Theorem [Metropolis, Hastings]: The stationary 

distribution is Z-1 Q(x)

Proof: Markov chain satisfies detailed balance condition!
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Gibbs sampling
Start with initial assignment x(0) to all variables

For t = 1 to ∞ do

Set x(t) = x(t-1)

For each variable Xi

Set vi = values of all x(t) except xi

Sample x(t)
i from P(Xi | vi)

Gibbs sampling satisfies detailed balance 

equation for P

Can efficiently compute conditional 

distributions P(Xi | vi) for graphical models
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Summary of Sampling
Randomized approximate inference for computing 

expections, (conditional) probabilities, etc.

Exact in the limit

But may need ridiculously many samples

Can even directly sample from intractable distributions

Disguise distribution as stationary distribution of Markov Chain

Famous example: Gibbs sampling
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Summary of approximate inference

Deterministic and randomized approaches

Deterministic

Loopy BP

Mean field inference

Assumed density filtering

Randomized

Forward sampling

Markov Chain Monte Carlo

Gibbs Sampling
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Recall: The “light” side
Assumed

everything fully observable

low treewidth

no hidden variables

Then everything is nice ☺

Efficient exact inference in large models

Optimal parameter estimation without local minima

Can even solve some structure learning tasks exactly
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The “dark” side

In the real world, these assumptions are often 

violated..

Still want to use graphical models to solve interesting 

problems..
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Remaining Challenges
Inference

Approximate inference for high-treewidth models

Learning

Dealing with missing data

Representation

Dealing with hidden variables



16

Learning general BNs

Missing data

HardEasy!Fully observable

Unknown structureKnown structure
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Dealing with missing data
So far, have assumed all variables

are observed in each training example

In practice, often have missing data

Some variables may never be observed

Missing variables may be different 

for each example
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Gaussian Mixture Modeling
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Learning with missing data
Suppose X is observed variables, Z hidden variables

Training data: x(1), x(2),…, x(N)

Marginal likelihood:

Marginal likelihood doesn’t decompose
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Intuition: EM Algorithm
Iterative algorithm for parameter learning in case of 

missing data

EM Algorithm

Expectation Step: “Hallucinate” hidden values

Maximization Step: Train model as if data were fully 

observed

Repeat

Will converge to local maximum
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E-Step:
x: observed data; z: hidden data

“Hallucinate” missing values by computing 

distribution over hidden variables using current 

parameter estimate:

For each example x(j), compute:

Q(t+1)(z | x(j)) = P(z | x(j), θ(t))
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Towards M-step: Jensen inequality

Marginal likelihood doesn’t decompose

Theorem [Jensen’s inequality]:  

For any distribution P(z) and function f(z),
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Lower-bounding marginal likelihood

Jensen’s inequality:

From E-step:
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Lower bound on marginal likelihood

Bound of marginal likelihood with hidden variables

Recall: Likelihood in fully observable case:

Lower-bound interpreted as “weighted” data set
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M-step: Maximize lower bound
Lower bound:

Choose θ(t+1) to maximize lower bound

Use expected sufficient statistics (counts). Will see:

Whenever we used Count(x,z) in fully observable case,

replace by EQt+1[Count(x,z)]
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Coordinate Ascent Interpretation

Define energy function

For any distribution Q and parameters θ:

EM algorithm performs coordinate ascent on F:

Monotonically converges to local maximum
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EM for Gaussian Mixtures
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EM Iterations [by Andrew Moore]
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EM in Bayes Nets
Complete data likelihood E B

A

J M
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EM in Bayes Nets
Incomplete data likelihood E B

A

J M



31

E-Step for BNs
Need to compute

For fixed z, x: Can compute using inference

Naively specifying full distribution would be intractable

E B
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M-step for BNs

Can optimize each CPT independently!

MLE in fully observed case:

MLE with hidden data:
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Computing expected counts

Suppose we observe O=o

Variables A hidden



34

Learning general BNs

NowEMMissing data

Hard (2.)Easy!Fully observable

Unknown structureKnown structure
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Structure learning with hidden data
Fully observable case:

Score(D;G) = likelihood of data under most likely parameters

Decomposes over families 

Score(D;G) = ∑ι FamScorei(Xi | PaXi
)

Can recompute score efficiently after adding/removing edges

Incomplete data case:

Score(D;G) = lower bound from EM

Does not decompose over families

Search is very expensive

Structure-EM: Iterate 

Computing of expected counts

Multiple iterations of structure search for fixed counts

Guaranteed to monotonically improve likelihood score
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Hidden variable discovery
Sometimes, “invention” of a hidden variable can 

drastically simplify model



37

Learning general BNs

Structure-EMEMMissing data

Hard (2.)Easy!Fully observable

Unknown structureKnown structure


