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Announcements
Homework 3 due today

Project poster session on Friday December 4 

(tentative)

Final writeup (8 pages NIPS format) due Dec 9
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Assumed density filtering / expectation propagation

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Variational approximation
Key idea: Approximate posterior with simpler 

distribution that’s as close as possible to P

What is a “simple” distribution?

What does “as close as possible” mean?

Simple = efficient inference

Typically: factorized (fully independent, chain, tree, …)

Gaussian approximation

As close as possible = KL divergence
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Finding simple approximate distributions

KL divergence not symmetric; need to choose directions

P: true distribution; Q: our approximation

D(P || Q)

The “right” way

Often intractable to compute

Assumed Density Filtering

D(Q || P)

The “reverse” way

Underestimates support

(overconfident)

Mean field approximation

Both special cases of α-divergence

min D(P||Q)

min D(Q||P)
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization 

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Assumed density filtering / expectation propagation

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Sampling based inference
So far: deterministic inference techniques

Loopy belief propagation

(Structured) mean field approximation

Assumed density filtering

Will now introduce stochastic approximations

Algorithms that “randomize” to compute expectations

In contrast to the deterministic methods, can sometimes 

get approximation guarantees

More exact, but slower than deterministic variants
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Computing expectations
Often, we’re not necessarily interested in computing 

marginal distributions, but certain expectations:

Moments (mean, variance, …)

Event probabilities
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Sample approximations of expectations

x1,…,xN samples from RV X

Law of large numbers:

Hereby, the convergence is with probability 1 

(almost sure convergence)

Finite samples:
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How many samples do we need?

Hoeffding inequality

Suppose f is bounded in [0,C]. Then

Thus, probability of error decreases exponentially in N!

Need to be able to draw samples from P
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Sampling from a Bernoulli distribution

X ~ Bernoulli(p)

How can we draw samples from X?
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Sampling from a Multinomial
X ~ Mult([θ,…,θk])

where θi = P(X=i); ∑i θi = 1

Function g: [0,1]�{1,…,k} assigns state g(x) to each x

Draw sample from uniform distribution on [0,1]

Return g-1(x)

θ θ θ … θk

0 1
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Forward sampling from a BN
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Monte Carlo sampling from a BN

Sort variables in topological ordering X1,…,Xn

For i = 1 to n do

Sample xi ~ P(Xi | X1=x1, …, Xi-1=xi-1)

Works even with high-treewidth models! C

D I

G S

L

J

H
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Computing probabilities through sampling

Want to estimate probabilities

Draw N samples from BN

Marginals

Conditionals

C

D I

G S

L

J

H
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Rejection sampling
Collect samples over all variables

Throw away samples that disagree with xB

Can be problematic if P(XB = xB) is rare event
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Sample complexity for probability estimates

Absolute error:

Relative error:
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Sampling from rare events
Estimating conditional probabilities P(XA | XB=xB) 

using rejection sampling is hard!

The more observations, the unlikelier P(XB = xB) becomes

Want to directly sample from posterior distribution!
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Sampling from intractable distributions

Given unnormalized distribution

P(X) ∝ Q(X)

Q(X) efficient to evaluate, but normalizer intractable

For example, Q(X) = ∏j Ψ(Cj)

Want to sample from P(X)

Ingenious idea: 

Can create Markov chain that is efficient to simulate 

and that has stationary distribution P(X)



20

Markov Chains
A Markov chain is a sequence 

of RVs, X1,…,XN,… with

Prior P(X1)

Transition probabilities P(Xt+1 | Xt)

A Markov Chain with P(Xt+1 | Xt)>0 has a unique 

stationary distribution µµµµ(X), such that for all x

limN→∞ P(XN=x) = µ(x)

The stationary distribution is independent of P(X1) 

X1 X2 X3 X4 X5 X6
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Simulating a Markov Chain
Can sample from a Markov chain as from a BN:

Sample x1~P(X1)

Sample x2~P(X2 | X1=x1)

…

Sample xN~P(XN | XN-1=xN-1)

…

If simulated “sufficiently long”, sample XN is drawn from 

a distribution “very close” to  stationary distribution µ
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Markov Chain Monte Carlo
Given an unnormalized distribution Q(x)

Want to design a Markov chain with stationary 

distribution

π(x) = 1/Z Q(x)

Need to specify transition probabilities P(x | x’)!



23

Detailed balance equation
A Markov Chain satisfies the detailed balance equation

for unnormalized distribution Q if for all x, x’:

Q(x) P(x’|x) = Q(x’) P(x | x’)

In this case, the Markov chain has stationary distribution 

1/Z Q(x)
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Designing Markov Chains
1) Proposal distribution R(X’ | X)

Given Xt = x, sample “proposal” x’~R(X’ | X=x)

Performance of algorithm will strongly depend on R

2) Acceptance distribution:

Suppose Xt = x

With probability

set Xt+1 = x’

With probability 1-α, set Xt+1 = x

Theorem [Metropolis, Hastings]: The stationary 

distribution is Z-1 Q(x)

Proof: Markov chain satisfies detailed balance condition!
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MCMC for Graphical Models
Random vector X=(X1,…,Xn) is high-dimensional

Need to specify proposal distributions R(x’|x) over 

such random vectors

x’: old state 

x: proposed state, x’ ~ R(X’ | X=x)

Examples
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Gibbs sampling
Start with initial assignment x(0) to all variables

For t = 1 to ∞ do

Set x(t) = x(t-1)

For each variable Xi

Set vi = values of all x(t) except xi

Sample x(t)
i from P(Xi | vi)

Gibbs sampling satisfies detailed balance 

equation for P

Key challenge: Computing conditional 

distributions P(Xi | vi)
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Computing P(Xi | vi)
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Example: (Simple) image segmentation

[see Singh ’08]
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Gibbs Sampling iterations
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Convergence of Gibbs Sampling
When are we close to stationary distribution?
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Summary of Sampling
Randomized approximate inference for computing 

expections, (conditional) probabilities, etc.

Exact in the limit

But may need ridiculously many samples

Can even directly sample from intractable distributions

Disguise distribution as stationary distribution of Markov Chain

Famous example: Gibbs sampling


