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Lecture 16 — Sampling
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Announcements

® Homework 3 due today

® Project poster session on Friday December 4
(tentative)

® Final writeup (8 pages NIPS format) due Dec 9
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Approximate inference

Three major classes of general-purpose approaches

Message passing
¢ E.g.: Loopy Belief Propagation (today!)

Inference as optimization
® Approximate posterior distribution by simple distribution
¢ Mean field / structured mean field
¢ Assumed density filtering / expectation propagation

Sampling based inference

® Importance sampling, particle filtering
® Gibbs sampling, MCMC

Many other alternatives (often for special cases)



Variational approximation

¢ Key idea: Approximate posterior with simpler
distribution that’s as close as possible to P

® What is a “simple” distribution?
® What does “as close as possible” mean?
® Simple = efficient inference
® Typically: factorized (fully independent, chain, tree, ...)

® Gaussian approximation

@ As close as possible = KL divergence



Finding simple approximate distributions

® KL divergence not symmetric; need to choose directions

¢ P: true distribution; Q: our approximation

@ D(P | | Q) P[g)pO:) &[x})dA
® The “right” way min D(Q| |P)

¢ Often intractable to compute
* Assumed Density Filtering min D(P| | Q)

°D(Q || P) Pl<) =0 5 g()=0
® The “reverse” way

® Underestimates support
(overconfident)

® Mean field approximation

® Both special cases of a-divergence
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Sampling based inference

® So far: deterministic inference techniques
® Loopy belief propagation

® (Structured) mean field approximation
® Assumed density filtering

¢ Will now introduce stochastic approximations
® Algorithms that “randomize” to compute expectations

@ |n contrast to the deterministic methods, can sometimes
get approximation guarantees

® More exact, but slower than deterministic variants



Computing expectations

® Often, we're not necessarily interested in computing
marginal distributions, but certain expectations:

® Moments (mean, variance, ...)

Ep[X*] = /ka(x)dx

® Event probabilities

\

P(X >c¢)=Ep|lxs.| = /[:U > c|P(z)dx



Sample approximations of expectations

® Xy,...,Xy S@Mples from RV X

—_—

¢ Law of large numbers:

Epl[f(X)] = Jim — 3" f(w:)

¢ Hereby, the convergence is with probability 1
(almost sure convergence)

" Finitg;f%@i?} oo J/\Ti %[,(;)



How many samples do we need?

¢ Hoeffding inequality
Suppose f is bounded in [0,C]. Then

PRI~ § 3 0] > 2) s 2esplconeic?

error pwhab, oty

® Thus, probability of error decreases exponent|ally in N!
\A/w/((' O € with Pmbaé L)%/

D exp-INF/CD) < S

2

aNgt/ct > Ly
1,2 0. 2

v 7‘%’ ce ¢ 29&

® Need to be able to draw samples from P
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Sampling from a Bernoulli distribution
@ X ~ Bernoulli(p)

® How can we draw samples from X?
A?Sm V¢ Com daw g J‘?A‘h(o%b«z [@,{j
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Sampling from a Multinomial

°* X~ Mult([b,,...,0,])
where 0. = P(X=i); 2.. 0. = 1

® Function g: [0,1]2{1,...,k} assigns state g(x) to each x
@ Draw sample from uniform distribution on [0,1]
@ Return g(x)
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Forward sampling from a BN

Easy | Hard Low High

0.7 0.3

Intelligence l’l

0.6 0.4

Int Diff |[80,100] | [50,80) | [0,50) p—— - ff'. & ?(S l l.. l\)
Low | Easy 0.3 0.4 0.3

gt [ Eaoy | 05 | o0 [ 002 Bl et | Good

ngh Hasv 0- 6 = d = Low | 095 0.05

9 arc 2 : : High 0.2 0.8 2’

PG [ Doh, )=L;) (Lo )®

Grade Fall Pass
[Bow] il (e

[0,50) 099 | 0.01
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Monte Carlo sampling from a BN

® Sort variables in topological ordering X, ..., X,

2 Fori=1tondo
® Sample x, ~ P(X; | X;=Xq, ..., X, {=X; 1) :?()( [ ﬁy)

* Works even with high-treewidth models! (¢
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Computing probabilities through sampling

¢ Want to estimate probabilities (¢c)
® Draw N samples from BN

ORO
® Marginals (6) (s)
’P(H:ZS;" P FIH"QJ i ? ‘P(’C) .(IH:Z (x),X X 0
ot 1, (9) . B
e ) Gt () LA

@ Conditionals
Plost ool PR H) - ot okt
P(E= Cowd (Biom]

Kcof ectm W”")(' l"b/
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Rejection sampling

® Collect samples over all variables

~ Count(x4,Xp)
P(XA:XA |XB:XB)% C’Ount(xB)

® Throw away samples that disagree with xg
® Can be problematic if P(X; = x;g) is rare event
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Sample complexity for probability estimates

@ Absolute error:

Prob(‘ﬁ(x) — P(x)| > 8) < 2exp(—2Ne?)

@ Relative error:

Prob(ﬁ(x) < (1 —|—8)P(X)> < 2exp(—NP(x)e?/3)

X
= —

Btohing (o1 pro ba bilily evnts
A 0
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Sampling from rare events

® Estimating conditional probabilities P(X, | Xg=xg)
using rejection sampling is hard!
* The more observations, the unlikelier P(Xg = xg) becomes

¢ Want to directly sample from posterior distribution!
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Sampling from intractable distributions

M . . . . t d j/ <
® Given unnormalized distribution n (%™ k) o ' 1% % )

P(X) oc Q(X) = PX ¢ Koge > X°'°S>
¢ Q(X) efficient to evaluate, but normalizer intractable
® For example, Q(X) = H-! (C)

® Want to sample from P(X) = %&(“y

® Ingenious idea:
Can create Markov chain that is efficient to simulate
and that has stationary distribution P(X)

19



Markov Chains

® A Markov chain is a sequence
of RVs, X,,...,Xy,--- With
® Prior P(X,)
* Transition probabilities P(X,,, | X;)

® A Markov Chain with P(X,, | X;)>0 has a unique
stationary distribution p(X), such that for all x

limy ., P(Xy=x) = ja(x)

The stationary distribution is independent of P(X,)
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Simulating a Markov Chain

® Can sample from a Markov chain as from a BN:

® Sample x,~P(X;)
® Sample x,~P(X, | X;=x,)

‘ LN

® Sample x\“~P(Xy | Xn.1=%n.1)

‘ LN

* |If simulated “sufficiently long”, sample X, is drawn from
a distribution “very close” to stationary distribution u
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Markov Chain Monte Carlo

® Given an unnormalized distribution Q(x)

¢ Want to desigh a Markov chain with stationary
distribution

m(x) = 1/Z Q(x)
® Need to specify transition probabilities P(x | x’)!
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Detailed balance equation

® A Markov Chain satisfies the detailed balance equation
for unnormalized distribution Q if for all x, x’:

Q(x) P(x"[x) = Q(x) P(x | x')

¢ |n this case, the Markov chain has stationary distribution
1/Z Q(x)

100 = EDARGE =47 AK)
m(4) = & ) Ple(e )
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Designing Markov Chains

1) Proposal distribution R(X" | X)

® Given X, = x, sample “proposal” xX’*R(X’ | X=x)

® Performance of algorithm will strongly depend on R
2) Acceptance distribution:
® Suppose X, = X

/ /
® With probability o = min {1, Qlz )R(.:z:/ | 2') }
set X,,; =X Q(z)R(z" | z)

¢ With probability 1-c, set X,; = x

Theorem [Metropolis, Hastings]: The stationary
distribution is Z1 Q(x)
® Proof: Markov chain satisfies detailed balance condition! ”



MCMC for Graphical Models

® Random vector X=(Xy,...,X,) is high-dimensional

® Need to specify proposal distributions R(x"|x) over
such random vectors

e x*: old state
o x! proposed state, x’ ~ R(X' | X=x)

¢ Examples

- QXK= =R (x')
— R(Al¥) ke Rp(%(Y

X-);- = k"lA-.
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Gibbs sampling

* Start with initial assignment x!% to all variables
®Fort=1tooodo
@ Set x(t) = x(t-1)

® For each variable X
* Set v; = values of all x*) except x;

* Sample x{t). from P(X. | v)

® Gibbs sampling satisfies detailed balance
equation for P

® Key challenge: Computing conditional
distributions P(X; | v;)
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Computing P(X. | v,)

R () = TAF(\V (c.)

o i)
POK: | K Kooy Keer K] = Z((x(,. Koot Keap o )
) Zléai(x,..-xm\ L Ty(g)
%3;%/52 (. K,ﬂ) % E_(\S'CC)
3 JT}(;/M “(g)
Z} o N () ~ LC)
)

. ﬁ\d‘eﬂ Ftet Cawtouin, }(p

27



Example: (Simple) image segmentation

Pl (4K ke, ).:
‘b[’() c»f& M

M\ T A6k
Jen()

[see Singh '08]
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terations

ofe
=

Gibbs Sampl
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Convergence of Gibbs Sampling

® When are we close to stationary distribution?

RSyl Al

Fiae

—t— 7’,\‘-
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Summary of Sampling

¢ Randomized approximate inference for computing
expections, (conditional) probabilities, etc.

® Exact in the limit
® But may need ridiculously many samples

® Can even directly sample from intractable distributions
® Disguise distribution as stationary distribution of Markov Chain
® Famous example: Gibbs sampling
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