Probabilistic Graphical Models

Lecture 15 – Inference as Optimization

CS/CNS/EE 155

Andreas Krause

Announcements

- Homework 3 due next Monday (Nov 23)
- Project poster session on Friday December 4 (tentative)
- Final writeup (8 pages NIPS format) due Dec 9

Approximate inference

Three major classes of general-purpose approaches

Message passing

E.g.: <u>Loopy Belief Propagation</u>

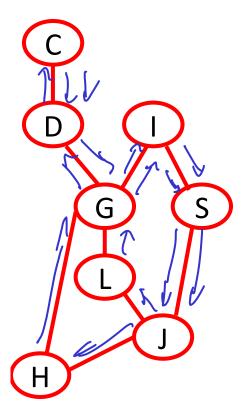
Inference as optimization

- Approximate posterior distribution by simple distribution
- Mean field / structured mean field

Sampling based inference

- Importance sampling, particle filtering
- Gibbs sampling, MCMC
- Many other alternatives (often for special cases)

Loopy BP on arbitrary pairwise MNs



- What if we apply BP to a graph with loops?
 - Apply BP and hope for the best..

$$\delta_{i \to j}(X_j) = \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \to i}(x_i)$$

- If it converges, will not necessarily get correct marginals

However, in practice, answers often still useful!

Approximate inference

Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

- Approximate posterior distribution by simple distribution
- Mean field / structured mean field
- Assumed density filtering / expectation propagation

Sampling based inference

- Importance sampling, particle filtering
- Gibbs sampling, MCMC
- Many other alternatives (often for special cases)

Variational approximation

- Graphical model with intractable (high-treewidth) joint distribution P(X₁,...,X_n)
- Want to compute posterior distributions

$$P(X_{3}, X_{4} | X_{1} = X_{1}, X_{7} = X_{7})$$

$$\angle P(X_{3}, X_{4}, X_{1} = X_{1}, X_{7} = X_{7}) = \sum_{X_{1}, X_{2}} \sum_{X_{5}, \dots} P(X_{1}, X_{2}, \dots = X_{N})$$

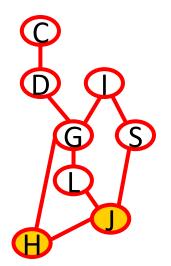
- Computing posterior exactly is intractable
- Key idea: Approximate posterior with simpler distribution that's as close to P as possible

Why should we hope that we can find a simple approximation?

- Prior distribution is complicated
 - Need to describe all possible states of the world (and relationships between variables)

- Posterior distribution is often simple:
 - Have made many observations less uncertainty
 - Variables can become "almost independent"
- For now: Represent posterior as undirected model (and instantiate observations)

$$P(X_1, \dots, X_n \mid obs) = \frac{1}{Z} \prod_j \Psi_j(\mathbf{C}_j)$$



Variational approximation

- Key idea: Approximate posterior with simpler distribution that's as close as possible to P
 - What is a "simple" distribution?
 - What does "as close as possible" mean?
- Simple = efficient inference
 - Typically: factorized (fully independent, chain, tree, ...)
 - Gaussian approximation
- As close as possible = KL divergence (typically)
 - Other distance measures can be used too, but more challenging to compute

Kullback-Leibler (KL) divergence

Distance between distributions

$$D(P||Q) = \int P(\mathbf{x}) \log \frac{P(\mathbf{x})}{Q(\mathbf{x})} d\mathbf{x}$$

- Properties:
 - D(P | | Q) ≥ 0
 - P(x)=Q(x) almost everywhere \Leftrightarrow D(P || Q) = 0
- In general, D(P || Q) ≠ D(Q || P)
 - P determines when difference is important

$$P(x) = 0 \quad Q(x) \neq 0 \quad \Rightarrow \quad 0 \cdot \log \frac{C}{E} = 0$$

$$P(x) = E \quad Q(x) = 0 \quad \Rightarrow \quad E - \log \frac{C}{O} = 0$$

Finding simple approximate distributions

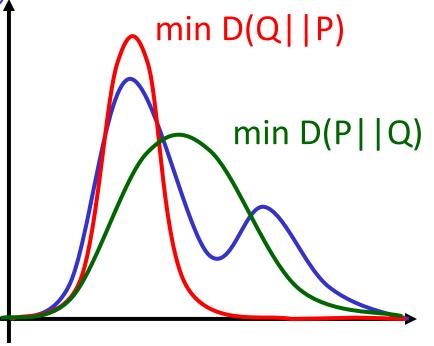
- KL divergence not symmetric; need to choose directions
- P: true distribution; Q: our approximation
- D(P | | Q)

P(x) > 0 => Q(x) > 0

- The "right" way
- Q chosen to "support" P
- Often intractable to compute
- D(Q | | P)

$$P(x) = 0 \Rightarrow Q(x) = 0$$

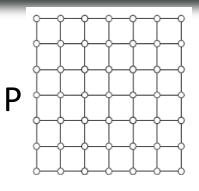
- The "reverse" way
- Underestimates support (overconfident)
- Will be tractable to compute
- ullet Both special cases of lpha-divergence



"Simple" distributions

- Simplest distribution: Q fully factorized
 - $Q(X_1,...,X_n) = \prod_i Q_i(X_i)$
- M = {Q: Q fully factorized} = {Q: Q(X) = $\prod_i Q_i(X_i)$ }

$$Q^* = \underset{Q \in \mathcal{M}}{\operatorname{argmin}} D(Q||P)$$



- Can also find more structured approximations
 - Chains: $Q(X_1,...,X_n) = \prod_i Q_i(X_i \mid X_{i=1})$
 - Trees
 - Any distributions one can do efficient inference on

Mean field approximation the "right way"

$$D(P(|Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

$$= \sum_{x} P(x) \log P(x) - \sum_{x} P(x) \log Q(x)$$

$$= \sum_{x} P(x) \log P(x) - \sum_{x} P(x) \log Q(x)$$

$$(x) = \sum_{x} P(x) \log \prod_{x} Q_{i}(x_{i})$$

$$= \sum_{x} P(x) \sum_{x} \log Q_{i}(x_{i})$$

$$= \sum_{x} P(x_{i}) \log Q_{i}(x_{i})$$

$$= \sum_{x} \sum_{x} P(x_{i}) \log Q_{i}(x_{i}) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$
Need $P(X_{i})$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(x_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

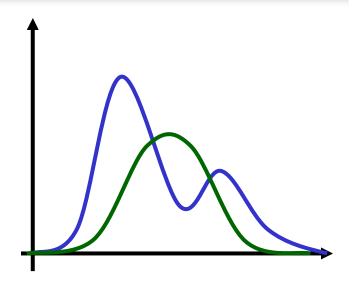
$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$

$$= \sum_{x} \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right) \left(\sum_{x} P(X_{i}) \log Q_{i}(x_{i})\right)$$



Mean field approximation the reverse way

$$D(Q UP) = \sum_{x} Q(x) \log_{x} \frac{Q(x)}{P(x)}$$

$$= \sum_{x} Q(x) \log_{x} Q(x) - \sum_{x} Q(x) \log_{x} P(x)$$

$$= \sum_{x} Q(x) \log_{x} Q(x) - \sum_{x} Q(x) \log_{x} P(x)$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} Q_{x}(x)$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} Q_{x}(x) \left(\sum_{x} Q(x_{1})\right) = -\sum_{x} H(Q_{x})$$

$$(2) = \sum_{x} Q(x) \log_{x} \frac{1}{2} \prod_{x} V_{x}(C_{x}) = \sum_{x} Q(x) \log_{x} \frac{1}{2} + \sum_{x} Q(x) \sum_{x} \log_{x} V_{x}(C_{x})$$

$$(3) = \sum_{x} Q(x) \log_{x} \frac{1}{2} \prod_{x} V_{x}(C_{x}) = \sum_{x} Q(x) \log_{x} \frac{1}{2} + \sum_{x} Q(x) \sum_{x} \log_{x} V_{x}(C_{x})$$

$$(4) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x})$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x})$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x})$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x})$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x})$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) = \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x})$$

$$= \sum_{x} \sum_{x} Q(x) \log_{x} V_{x}(C_{x}) \log_{x} V_{x}(C_{x})$$

Reverse KL for fully factorized case

$$D(Q||P) = -\sum_{i} \sum_{x} Q(x) \log \Psi_{i}(x) - \sum_{i} H(Q_{i}) + \ln Z$$

$$\mathbb{E}_{Q}[\log \Psi_{i}]$$

ln
$$Z = D(Q|P) + \sum_{i} H(Q_{i}) + \sum_{i} E_{Q}[log Y_{i}]$$

constat

The property of the prope

KL and the partition function

Suppose $P(X_1,...,X_n) = Z^{-1} \prod_i \Psi_i(C_i)$ is Markov Network

Theorem:

$$\ln Z = F[P;Q] + D(Q||P)$$

Hereby, F[P;Q] is the following energy functional

$$F[P;Q] = \sum_{i} \mathbb{E}[\ln \Psi_{i}] + H(Q)$$

Reverse KL vs. log-partition function

$$\ln Z = F[P;Q] + D(Q||P) \qquad F[P;Q] = \sum_{i} \mathbb{E}[\ln \Psi_{i}] + H(Q)$$

Maximizing energy functional ⇔ Minimizing reverse KL

Corollary:

Energy function is lower bound on log partition function

Optimizing for mean field approximation

• Want to solve $\max_{Q} F[P;Q] = \max_{Q} \sum_{j} \mathbb{E}_{Q}[\ln \Psi_{j}] + \sum_{i} H(Q_{i})$

s.t.
$$\sum_{x_i} Q_i(x_i) = 1$$

• Solved via Lagrange multipliers: there exist λ....λη

Differentiate and set to 0!

Minimum. Maximum or saddle paint

Theorem: Q stationary point iff for each i and x_i :

$$Q_i(x_i) = \frac{1}{Z_i} \exp\left(\sum_j \mathbb{E}[\ln \Psi_j \mid x_i]\right)$$

Fixed point iteration for MF

- Initialize factors Q⁽⁰⁾; arbitrarily; t=0
- Until converged, do
 - t← t+1
 - For each variable i and each assignment x_i do

$$Q_i(x_i)^{(t+1)} = \frac{1}{Z_i} \exp\left(\sum_j \mathbb{E}_{Q^{(t)}} [\ln \Psi_j \mid x_i]\right)$$

- Guaranteed to converge! ©
- Gives both approx. distribution Q and lower bound on In Z
- Can get stuck in local optimum < </p>

Computing updates

Need to compute

$$Q_i(x_i)^{(t+1)} = \frac{1}{Z_i} \exp\left(\sum_j \mathbb{E}_{Q^{(t)}}[\ln \Psi_j \mid x_i]\right)$$

Must compute expected log potentials: $m{\mathbb{H}}_Q[\ln \Psi_j \mid x_i]$

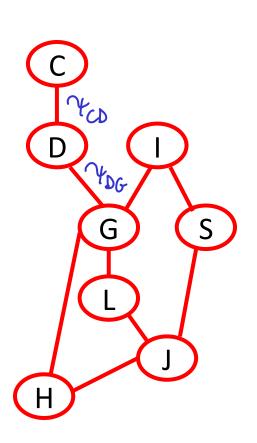
$$(x) = \sum_{x} Q(x|x;) dn Y_{j}(x) = \sum_{y} Q^{(x)}(c_{j}|x_{i}) ln Y_{j}(c_{j})$$

$$= Y_{j}(c_{j})$$

$$= T Q_{k}(x_{k})$$

$$= kcC_{j}(x_{i})$$

Example iteration



$$\mathbb{E}_{Q}[\ln \gamma_{0G} | X_{0}=1] \\
= \sum_{X_{G}} Q(X_{G} | X_{0}=1) \ln \gamma_{0G}(X_{0}=1, X_{0}) \\
= Q_{G}(X_{G})$$

$$= Q_{G}(X_{G})$$

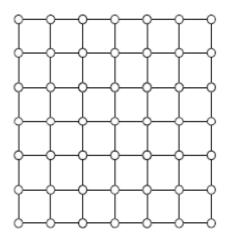
$$Q_{Q}(X_{0}=1) = \frac{1}{2_{Q}} \exp(\mathbb{E}_{Q}[\ln \gamma_{0G} | X_{0}=1] + \mathbb{E}_{Q}[\ln \gamma_{0G} | X_{0}=1])$$

Structured mean field

Goal of variational inference:

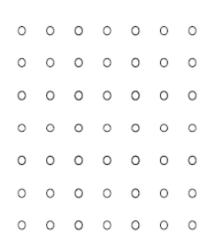
Approximate complex distribution by simple distribution

True dist.



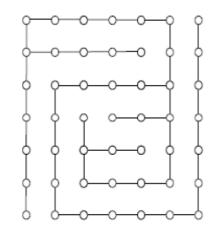
$$p(x) \propto \prod_{c} \phi_{c}(x_{c})$$

Fully-factorized mean field



$$q(x) \propto \prod_i q_i(x_i)$$

Structured mean field



$$q(x) \propto q_A(x_A) q_B(x_B)$$

Structured mean-field approximations

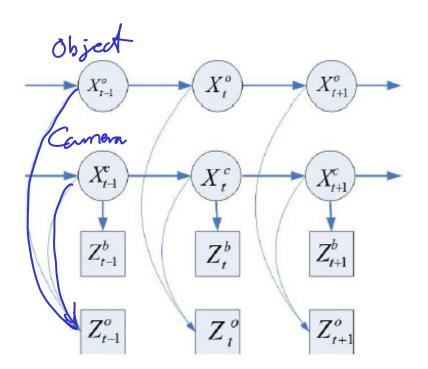
Can get better approximations using structured approximations:

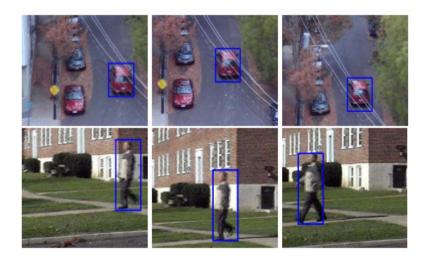
$$\max_{Q \in \mathcal{M}} F[P; Q] = \max_{Q \in \mathcal{M}} \sum_{j} \mathbb{E}_{Q}[\ln \Psi_{j}] + H(Q)$$

- Only need to be able to compute energy functional
- Can do whenever we can perform efficient inference in Q (e.g., chains, trees, low-treewidth models)
 - Update equations look similar as for fully-factorized case (see reading)

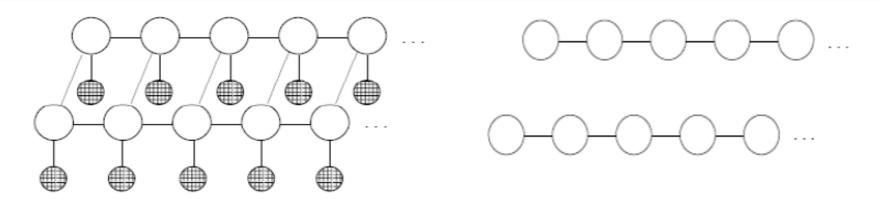
Example: Factorial HMM

- Simultaneous tracking and camera registration
- State space decomposed into object location and camera parameters





Variational approximations for FHMMs



$$\max_{Q \in \mathcal{M}} F[P; Q] = \max_{Q \in \mathcal{M}} \sum_{j} \mathbb{E}_{Q}[\ln \Psi_{j}] + H(Q)$$

Approximate posterior by independent chains

$$\mathcal{M} = \left\{ Q : Q(\mathbf{X}) = \prod_{c} \prod_{t} Q_{c,t}(X_{c,t}|X_{c,t-1}) \right\}$$

Summary: Variational inference

- Approximate complex (intractable) distribution by simpler distribution that is "as close as possible"
- Simple = tractable (efficient inference)
- Closeness = Reverse KL (efficient to compute)
- Interpretation: Optimize lower bound on the log-partition function
 - Implies upper bound on event probabilities
- Efficient algorithm that's guaranteed to converge (in contrast to Loopy BP...), but possibly to local optimum

Approximate inference

Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

- Approximate posterior distribution by simple distribution
- Mean field / structured mean field
- Assumed density filtering / expectation propagation

Sampling based inference

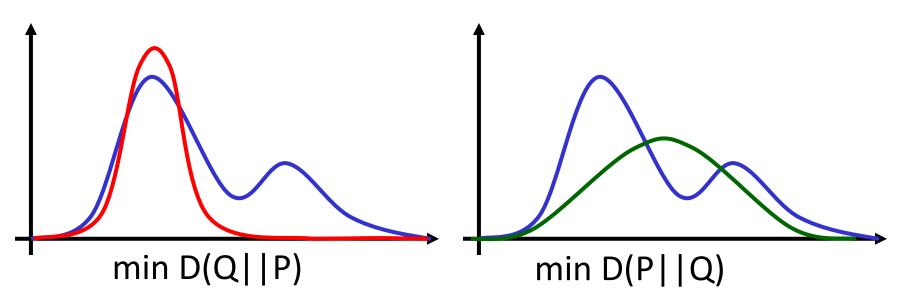
- Importance sampling, particle filtering
- Gibbs sampling, MCMC
- Many other alternatives (often for special cases)

KL-divergence the "right" way:

• Find distribution $Q^* \in M$:

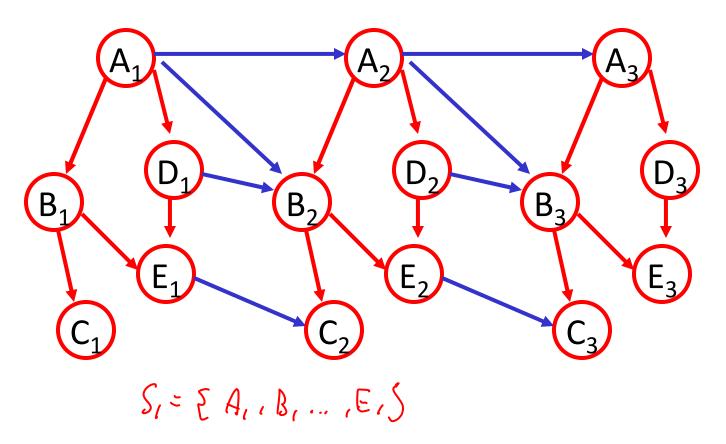
$$Q^* = \operatorname*{argmin}_{Q \in \mathcal{M}} D(P||Q)$$

- In some applications, can compute D(P | | Q)
 - Important example: Assumed density filtering in DBNs



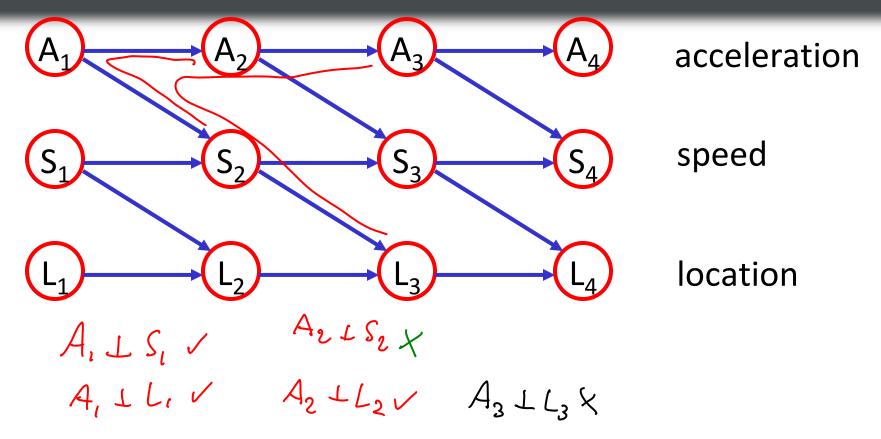
Recall: Dynamic Bayesian Networks

At every timestep have a Bayesian Network



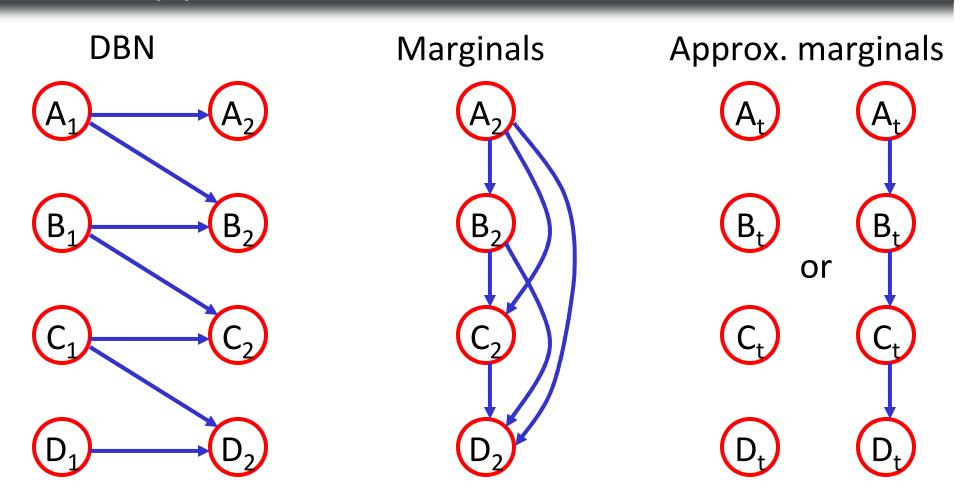
- Variables at each time step t called a "slice" S_t
- "Temporal" edges connecting S_{t+1} with S_t

Flow of influence in DBNs



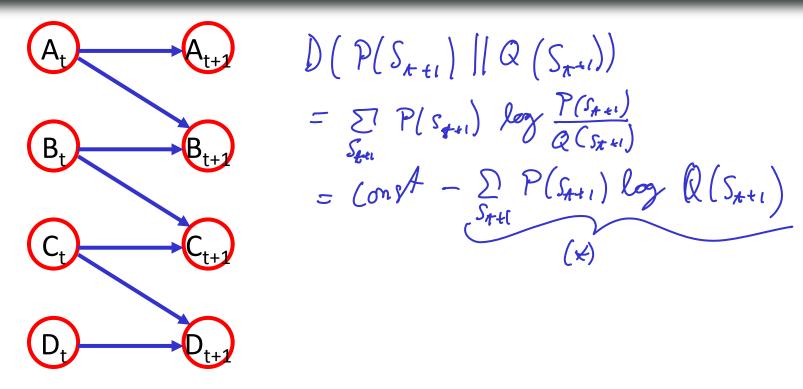
Can we do efficient filtering in BNs?

Approximate inference in DBNs?



Want to find **tractable** approximation to marginals that's **as close** to true marginals as possible

Assumed Density Filtering



- Assume distribution P(S_t) for slice t factorizes
- P(S_{t+1}) is fully connected
 ⑤
- Want to compute best-approximation Q* for P(S_{t+1})

$$Q^* = argmin D(P || Q)$$

Assumed Density Filtering

At
$$A_{t+}$$
 $\sum_{S_{k+1}} P(S_{k+1}) \log Q(S_{k+1})$

$$= \prod_{A} Q_{i}(S_{i,k+1})$$

By $P(S_{k+1}) \log Q_{i}(S_{i,k+1})$

$$= \sum_{A} \sum_{S_{k+1}} P(S_{k+1}) \log Q_{i}(S_{i,k+1})$$

$$= \sum_{A} \sum_{S_{i,k+1}} P(S_{i,k+1}) \log Q_{i}(S_{i,k+1})$$

Con compute expections efficiently

Cet optimal Q^{2} by setting $Q_{i}^{*}(S_{i,k+1}) = P(S_{i,k+1})$

Recall: Bayesian filtering

- Start with P(X₁)
- At time t
 - Assume we have $P(X_t \mid y_{1...t-1})$
 - Condition: P(X_t | y_{1...t})

Prediction: P(X_{t+1}, X_t | y_{1...t})

• Marginalization: $P(X_{t+1} | y_{1...t})$

$$P(X_{t+1}|y_{i-t}) = \sum_{x_{k}} P(X_{t+1}, x_{k}|y_{i-t})$$

Assumed Density Filtering

- Start with P(S₁)
- At every time step t: tractable approximation Q_t $Q_t(S_t) \approx P(S_t \mid O_{1:t-1})$
- Condition on observation $O_t \subseteq S_t$: $Q_t(S_t \mid O_t)$
- Predict: multiply transition model to get $Q_t(S_{t+1}, S_t \mid O_t)$ $Q_t(S_{t+1}, S_t \mid O_t) = Q_t(S_t \mid O_t) P(S_{t+1} \mid S_t)$
- Marginalize S,
 - This is intractable (connects all variables in S_{t+1})
 - Approximate $Q_t(S_{t+1} | O_t)$ by Q^* s.t. $Q^* = \operatorname{argmin}_O D(Q_t(S_{t+1}) | Q(S_{t+1}))$
 - This is done by matching moments: for discrete models, ensure that Q_{t+1}(s_{t+1}) = Q_t(s_{t+1} | o_t)

Summary of Assumed Density Filtering

- Variational inference technique for dynamical Bayesian Networks
- Find tractable approximation for each time slice that minimizes KL divergence (in the "right" way)
- Can show that errors don't add up too much
- Examples:
 - Tractable inference in DBNs
 - Unscented Kalman Filter

Summary: Inference as optimization

- Approximate intractable distribution by a tractable one
- Optimize parameters of the distribution to make approximation as tight as possible
- Common distance measure: KL-divergence (both ways)
 - ullet Special case of lpha-divergence
- Can get upper bounds on event probabilities, etc.