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Announcements

® Homework 3 due next Monday (Nov 23)

® Project poster session on Friday December 4
(tentative)

® Final writeup (8 pages NIPS format) due Dec 9
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Approximate inference

Three major classes of general-purpose approaches

Message passing
¢ E.g.: Loopy Belief Propagation

Inference as optimization

® Approximate posterior distribution by simple distribution
¢ Mean field / structured mean field

Sampling based inference

* Importance sampling, particle filtering
® Gibbs sampling, MCMC

Many other alternatives (often for special cases)



Loopy BP on arbitrary pairwise MNs

¢ What if we apply BP to a graph with loops?
® Apply BP and hope for the best..

5Z_>J(X]) = Zﬂ-i(wi)ﬂ-i,j(xia){j) H 5s—>z(xz)
Ti sEN(i)\{7}
® Will not generally converge.. ®

® If it converges, will not necessarily get
correct marginals ®

® However, in practice, answers often still
useful!



o

9

o

9

9

Approximate inference

Three major classes of general-purpose approaches

Message passing
¢ E.g.: Loopy Belief Propagation (today!)

Inference as optimization

® Approximate posterior distribution by simple distribution
¢ Mean field / structured mean field
¢ Assumed density filtering / expectation propagation

Sampling based inference

® Importance sampling, particle filtering
® Gibbs sampling, MCMC

Many other alternatives (often for special cases)



Variational approximation

® Graphical model with intractable (high-treewidth)
joint distribution P(X,,...,X.)

¢ Want to compute posterior distributions
,P()(g( XQ / X(:K/ ( }(9=5(72)
=X =Xy ) — ZC ? )(”3( LK
L (Ko b (XK ) =5 FE WAty
¢ Computing posterior exactly is intractable

¢ Key idea: Approximate posterior with simpler
distribution that’s as close to P as possible



Why should we hope that we can find a simple

approximation?

® Prior distribution is complicated

® Need to describe all possible states of the
world (and relationships between varlables)

‘‘‘‘‘‘

® Posterior distribution is often simple:

* Have made many observations =2 less uncertainty
® Variables can become “almost independent”

® For now: Represent posterior as undirected
model (and instantiate observations)

P(X1,...,X, | obs) = H\If



Variational approximation

¢ Key idea: Approximate posterior with simpler
distribution that’s as close as possible to P

® What is a “simple” distribution?
® What does “as close as possible” mean?

¢ Simple = efficient inference
¢ Typically: factorized (fully independent, chain, tree, ...)
® (GGaussian approximation

@ As close as possible = KL divergence (typically)

@ Other distance measures can be used too, but more
challenging to compute



Kullback-Leibler (KL) divergence

@ Distance between distributions

P(x)

Q)™

D(P|Q) = | Px)log

@ Properties:
*D(P[|Q)=0
* P(x)=Q(x) almost everywhere <> D(P || Q) =0

® Ingeneral, D(P || Q) #D(Q || P)

¢ P determines when difference is im(g)ortant
P)=0  Rlx)+0 2 0- by T =

=&
T € Qoo > €Ly F =0



Finding simple approximate distributions

® KL divergence not symmetric; need to choose directions

¢ P: true distribution; Q: our approximation

@ D(P | | Q) P[g)pO:) &[z})dA
® The “right” way min D(Q| |P)

® Q chosen to “support” P
¢ Often intractable to compute min D(P||Q)

ep@[lp)  PHIo= Gl
® The “reverse” way

® Underestimates support
(overconfident)

* Will be tractable to compute

® Both special cases of a-divergence
10



“Simple” distributions

¢ Simplest distribution: Q fully factorized
* Q(Xy,...,.X,) =TT Q(X)

* M ={Q: Qfully factorized} :
={Q: Q(X) =I1; (X))} e
) . Q. oo
Q)" = argmin D(Q||P)
QeM b[’P[/Q) 6 6 00 0 o o

® Can also find more structured approximations
® Chains: Q(X,...,. X)) =11, Q(X: | X._;)
® Trees
® Any distributions one can do efficient inference on
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Mean field approximation the “right way”

D(rua)= O P6 Ly i

- 2 PE by T ~ &1 Pk Joy A(¢)
7 ol

(4 - 51 Ple) Loy Ta:(x)
_ O PE) S ey Q)

= 28P(%) fog @ lc;]

~2(§‘P{x %Q&)( Py )
T S Keddem
N&&O’ F[’() (
[A-l-ﬂ'\.ow(@j
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Mean field approximation the reverse way

QL () )

D(a uP) - iﬂcz(zy by 573
= 7 QW) tay Q) =2 Q1) by T)
G g

(o)

(5 s ~H@®Y) = & QD Loy T Q(k;)
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Reverse KL for fully factorized case

D(Q||P) = —> Y " Q(z)log U;(x ZH (Qi) +InZ

W =4
Eq M@j
(mZ D(alry + 2k (Q,) Ly ¥
Cd"\M \\/;':4/5 L/__;_W\a;\\ A/J

a7
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KL and the partition function
Suppose P(X,,...,.X.) =21 [ ]. &(C) is Markov Network

Theorem: o amy ] /M"’?{ "qu"‘/} Twﬁ’ f\”‘”f”h%ﬂ/
In Z =[F[P; Q] +|D(Q||P)

Hereby, F[P;Q] is the following energy functional

F[P;Q] = Z@Jlan + H(Q)
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Reverse KL vs. log-partition function
InZ =|F[P; Q] HD(Q||P)  FIPiQl =) Ellnw¥]+H(Q)
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Maximizing energy functional <~ Minimizing reverse KL

Corollary:
Energy function is lower bound on log partition function

Pl¢) = LT (¢)

P ¢ Frg %6
IM((.‘éS upper ool o &W{_{”DLWL{U#@ (
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Optimizing for mean field approximation

® Want to solve mng[P Q| = maxZEQ InU;] + ZH (@)
(¢) ]

S.t. ZQZ T;) =

* Solved via Lagrange multlphers Yoore et A, .
St opfimi izadiv of ¥ (s ‘?fﬁ*‘vlwﬂd <o

e 2 Eq ) « 2 PE) + 52 LZM j
DM«AC mJ 57{‘4'0 0/

P Mirtmpa , Mo imgom or sn ol ("a‘;"'t
%
Theorem: Q stationary point iff for each i and x;:



Fixed point iteration for MF

® |nitialize factors Q'9). arbitrarily; t=0

¢ Until converged, do
° t— t+1

® For each variable i and each assignment x, do

1

Qi) = - exp()_Equlln ¥; | i
‘ J

9 = & Q)

® Guaranteed to converge! ©
® Gives both approx. distribution Q and lower bound on In Z

® Can get stuck in local optimum ®
18



Computing updates

Need to compute

1

Qi)' = — exp(Y_Equw[In¥; | z;])
) ] .

Must compute expected log potentials:@- ﬂQ [ln \Ifj \ QZ@]
(1)
X AL C)Nx“\/\/\/“

= /W(Cj) ‘-=TF &b(}(é)

J .
éc Cd\é ¢3
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Example iteration
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Structured mean field

Goal of variational inference:
Approximate complex distribution by simple distribution

True dist. Fully-factorized Structured
mean field mean field

i i % {'-'\ ™
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Structured mean-field approximations

@ Can get better approximations using structured
approximations:

&%F[P; Q] = max ;EQUH v+ H(Q)

¢ Only need to be able to compute energy functional

® Can do whenever we can perform efficient inference in Q
(e.g., chains, trees, low-treewidth models)

* Update equations look similar as for fully-factorized case
(see reading)
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Example: Factorial HMM

® Simultaneous tracking and camera registration

¢ State space decomposed into object location and
camera parameters

Oh et

= Py ({(
MX )—NkX:}l,J'_F

Mei and Porikli ‘08 23



Variational approximations for FHMMs

® Approximate posterior by independent chains

M={Q: QX HH@H Xei|Xei1)]
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Summary: Variational inference

® Approximate complex (intractable) distribution by
simpler distribution that is “as close as possible”

® Simple = tractable (efficient inference)
® Closeness = Reverse KL (efficient to compute)

® Interpretation: Optimize lower bound on the
log-partition function

® Implies upper bound on event probabilities

¢ Efficient algorithm that’s guaranteed to converge (in
contrast to Loopy BP..), but possibly to local optimum

25
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Approximate inference

Three major classes of general-purpose approaches

Message passing
¢ E.g.: Loopy Belief Propagation (today!)

Inference as optimization

® Approximate posterior distribution by simple distribution
¢ Mean field / structured mean field
¢ Assumed density filtering / expectation propagation

Sampling based inference

® Importance sampling, particle filtering
® Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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KL-divergence the “right” way:

¢ Find distribution Q* € M:

Q" = argmin D(P||Q)
QeM

® In some applications, can compute D(P | | Q)

® I[mportant example: Assumed density filtering in DBNs

A A

min D(Q] | P) min D(P|]Q)
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Recall: Dynamic Bayesian Networks

¢ At every timestep have a Bayesian Network

S/: (S: A,z B, ,E/§

® Variables at each time step t called a “slice” S,

|H

® “Temporal” edges connecting S,,; with S,

28



Flow of influence in DBNSs

‘ acceleration
@ XD speed
@\D\DXD location

ALs s “rihx
A LLev ALl ALK

A

@ Can we do efficient filtering in BNs?

29



Approximate inference in DBNs?

DBN Marginals Approx. marginals

®
© ©
® ©

Want to find tractable approximation to marginals
that’s as close to true marginals as possible

30



Assumed Density FiItering

- [,0’“% 2 P(QH Q"?/ @(S;H(>

o~
C (9

©

® Assume distribution P(S,) for slice t factorizes
® P(S,,,) is fully connected ®
® Want to compute best-approximation Q* for P(S,,,)

Q* =argmin D(P || Q)
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Assumed Density Filtering

A @ 2 P(Yﬁﬂ L?/&(S}“)

"‘TQ‘ (S ,fu)
B
= 09 ) %Q( el
C b Sa
- 8 2 ?(&,Hl %Q[ u‘-ﬂ
@ 591?[/4*“

m axdly

Gt oghmal Q@7 ), by Q (S ) = HE
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Recall: Bayesian filtering

@ Start with P(X,) 000010

2 Attime t

® Assume we have P(X; | y; {4) @ @ @ Q @ @

* Condition: P(X, | y, )

?[)(16{\/, AADL P()(x:[y[.- b-l) P(\/)r/}(,ezy(.- -l

® Prediction: P(X,,, X, | V1 4)

‘P[X)\;fl :Kn: \ Fi. A - (P[S(,e l 9(-%‘) 'jb(){t*t ) %’ L -ft)
:PZS?&'&(
® Marginalization: P(X.,, | y; ) W

P/)(t“(c)t-.t\: g P(X,L—-u:xk [}()(,->
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Assumed Density Filtering
@ Start with P(S,)

® At every time step t: tractable approximation Q,
Q,(S;) ~ P(S; | O1.4.4)
® Condition on observation O, C S;: Q,(S, | O,)
® Predict: multiply transition model to get Q,(S,,,S; | O)
O~t(st+1rst | Ot) = Qt(stl Ot) P(St+1 | St)
* Marginalize S,

® This is intractable (connects all variablesin S,,,)
® Approximate Q,(S,,, | O,) by Q* s.t.

Q* = argminQ D(Qt(st+1) || Q(St+1))
® This is done by matching moments:

for discrete models, ensure that Q,,(S.,1) = Qi(S.1 | 04)
34



Summary of Assumed Density Filtering

® Variational inference technique for dynamical
Bayesian Networks

® Find tractable approximation for each time slice that
minimizes KL divergence (in the “right” way)

® Can show that errors don’t add up too much
® Examples:

@ Tractable inference in DBNs
¢ Unscented Kalman Filter

35



Summary: Inference as optimization

¢ Approximate intractable distribution by a tractable one

¢ Optimize parameters of the distribution to make
approximation as tight as possible

® Common distance measure: KL-divergence (both ways)
® Special case of a-divergence

® Can get upper bounds on event probabilities, etc.
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