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Announcements
Homework 3 due next Monday (Nov 23)

Project poster session on Friday December 4 

(tentative)

Final writeup (8 pages NIPS format) due Dec 9
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation

Inference as optimization

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Loopy BP on arbitrary pairwise MNs

What if we apply BP to a graph with loops?

Apply BP and hope for the best..

Will not generally converge.. �

If it converges, will not necessarily get 

correct marginals �

However, in practice, answers often still 

useful! 
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Assumed density filtering / expectation propagation

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Variational approximation
Graphical model with intractable (high-treewidth) 

joint distribution P(X1,…,Xn)

Want to compute posterior distributions

Computing posterior exactly is intractable

Key idea: Approximate posterior with simpler 

distribution that’s as close to P as possible
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Why should we hope that we can find a simple 

approximation?

Prior distribution is complicated 

Need to describe all possible states of the 

world (and relationships between variables)

Posterior distribution is often simple:

Have made many observations � less uncertainty

Variables can become “almost independent”

For now: Represent posterior as undirected 

model (and instantiate observations)

C

D I

G S

L

J
H

s
1 s

2 s
3

s
4

s
5

s
7

s
6

s
11

s
12

s
9 s

10

s
8

s
1 s

3

s
12

s
9



8

Variational approximation
Key idea: Approximate posterior with simpler 

distribution that’s as close as possible to P

What is a “simple” distribution?

What does “as close as possible” mean?

Simple = efficient inference

Typically: factorized (fully independent, chain, tree, …)

Gaussian approximation

As close as possible = KL divergence (typically)

Other distance measures can be used too, but more 

challenging to compute
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Kullback-Leibler (KL) divergence
Distance between distributions

Properties:

D(P || Q) ≥ 0

P(x)=Q(x) almost everywhere � D(P || Q) = 0

In general, D(P || Q) ≠ D(Q || P)

P determines when difference is important
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Finding simple approximate distributions

KL divergence not symmetric; need to choose directions

P: true distribution; Q: our approximation

D(P || Q)

The “right” way

Q chosen to “support” P

Often intractable to compute

D(Q || P)

The “reverse” way

Underestimates support

(overconfident)

Will be tractable to compute

Both special cases of α-divergence

min D(P||Q)

min D(Q||P)
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“Simple” distributions
Simplest distribution: Q fully factorized

Q(X1,…,Xn) = ∏i Qi(Xi)

M = {Q: Q fully factorized}
= {Q: Q(X) = ∏i Qi(Xi)}

Can also find more structured approximations

Chains: Q(X1,…,Xn) = ∏ι Qi(Xi | Xi=1)

Trees

Any distributions one can do efficient inference on

P

Q
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Mean field approximation the “right way”
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Mean field approximation the reverse way
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Reverse KL for fully factorized case
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KL and the partition function
Suppose P(X1,…,Xn) =Z-1 ∏i Ψi(Ci) is Markov Network

Theorem:

Hereby, F[P;Q] is the following energy functional
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Reverse KL vs. log-partition function

Maximizing energy functional � Minimizing reverse KL

Corollary: 

Energy function is lower bound on log partition function
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Optimizing for mean field approximation

Want to solve

Solved via Lagrange multipliers

Theorem: Q stationary point iff for each i and xi:
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Fixed point iteration for MF
Initialize factors Q(0)

i arbitrarily; t=0

Until converged, do

t← t+1

For each variable i and each assignment xi do

Guaranteed to converge! ☺

Gives both approx. distribution Q and lower bound on ln Z

Can get stuck in local optimum �
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Computing updates
Need to compute

Must compute expected log potentials:
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Example iteration
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Structured mean field
Goal of variational inference: 

Approximate complex distribution by simple distribution

True dist. Fully-factorized

mean field

Structured

mean field
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Structured mean-field approximations

Can get better approximations using structured 

approximations:

Only need to be able to compute energy functional

Can do whenever we can perform efficient inference in Q 

(e.g., chains, trees, low-treewidth models)

Update equations look similar as for fully-factorized case 

(see reading)
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Example: Factorial HMM
Simultaneous tracking and camera registration

State space decomposed into object location and 

camera parameters

Mei and Porikli ‘08
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Variational approximations for FHMMs

Approximate posterior by independent chains
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Summary: Variational inference
Approximate complex (intractable) distribution by 

simpler distribution that is “as close as possible”

Simple = tractable (efficient inference)

Closeness = Reverse KL (efficient to compute)

Interpretation: Optimize lower bound on the 

log-partition function 

Implies upper bound on event probabilities

Efficient algorithm that’s guaranteed to converge (in 

contrast to Loopy BP..), but possibly to local optimum 
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Assumed density filtering / expectation propagation

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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KL-divergence the “right” way:
Find distribution Q* ∈M: 

In some applications, can compute D(P || Q)

Important example: Assumed density filtering in DBNs

min D(Q||P) min D(P||Q)



28

Recall: Dynamic Bayesian Networks

At every timestep have a Bayesian Network

Variables at each time step t called a “slice” St

“Temporal” edges connecting St+1 with St
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Flow of influence in DBNs

Can we do efficient filtering in BNs?
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S2

L2

A3

S3

L3

A4
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acceleration
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location
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Approximate inference in DBNs?

A1

B1

C1

A2

B2

C2

D1 D2

A2

B2

C2

D2

Want to find tractable approximation to marginals

that’s as close to true marginals as possible

DBN Marginals

At

Bt

Ct

Dt

At

Bt

Ct

Dt

Approx. marginals

or
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Assumed Density Filtering

Assume distribution P(St) for slice t factorizes 

P(St+1) is fully connected �

Want to compute best-approximation Q* for P(St+1)

Q* = argmin D(P || Q)

At

Bt

Ct

At+1

Bt+1

Ct+1

Dt Dt+1
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Assumed Density Filtering

At
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Recall: Bayesian filtering
Start with P(X1)

At time t

Assume we have P(Xt | y1…t-1)

Condition: P(Xt | y1…t)

Prediction: P(Xt+1, Xt | y1…t)

Marginalization: P(Xt+1 | y1…t)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Assumed Density Filtering
Start with P(S1)

At every time step t: tractable approximation Qt

Qt(St) ≈ P(St | O1:t-1)

Condition on observation Ot ⊆ St: Qt(St | Ot)

Predict: multiply transition model to get Qt(St+1,St | Ot)

Qt(St+1,St | Ot) = Qt(St| Ot) P(St+1 | St)

Marginalize St

This is intractable (connects all variables in St+1)

Approximate Qt(St+1 | Ot) by Q* s.t.

Q* = argminQ D(Qt(St+1) || Q(St+1))

This is done by matching moments:

for discrete models, ensure that Qt+1(st+1) = Qt(st+1 | ot)
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Summary of Assumed Density Filtering

Variational inference technique for dynamical 

Bayesian Networks

Find tractable approximation for each time slice that 

minimizes KL divergence (in the “right” way)

Can show that errors don’t add up too much

Examples:

Tractable inference in DBNs

Unscented Kalman Filter
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Summary: Inference as optimization

Approximate intractable distribution by a tractable one

Optimize parameters of the distribution to make 

approximation as tight as possible

Common distance measure: KL-divergence (both ways)

Special case of α-divergence

Can get upper bounds on event probabilities, etc.


