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Approximate InferenceApproximate Inference
• Consider general UGs (i.e., not tree-structured)

• All basic computations are intractable (for large G)

- likelihoods & partition function

- marginals & conditionals

- finding modes
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Approximate InferenceApproximate Inference
• Stochastic (Sampling)

- Metropolis-Hastings, Gibbs, (Markov Chain) Monte Carlo, etc
- Computationally expensive, but is “exact” (in the limit)

• Deterministic (Optimization)
- Mean Field (MF), Loopy Belief Propagation (LBP)
- Variational Bayes (VB), Expectation Propagation (EP)
- Computationally cheaper, but is not exact (gives bounds)
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• General idea
- approximate p(x) by a simpler factored distribution q(x)
- minimize “distance” D(p||q) - e.g., Kullback-Liebler
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Mean Field : OverviewMean Field : Overview



• Naïve MF has roots in Statistical Mechanics (1890s)
- physics of spin glasses (Ising), ferromagnetism, etc

- why is it called why is it called ““Mean FieldMean Field”” ??

with full factorization :  E[xi xj] = E[xi] E[xj]

Mean Field : OverviewMean Field : Overview

• Structured MF is more “modern”

Coupled HMM                       Structured MF approximation
(with tractable chains)



KL ProjectionKL Projection DD((Q||PQ||P ))
• Infer hidden h given visible v  (clamp v nodes with δ ‘s)

•• VariationalVariational : optimize KL globally

the right density form for Q “falls out”
KL is easier since we’re taking E [.] wrt simpler Q
Q seeks mode with the largest mass (not height)
so it will tend to underestimate the support of P

P = 0 forces  Q = 0



KL Projection KL Projection DD((P||QP||Q))
• Infer hidden h given visible v  (clamp v nodes with δ ‘s)

•• Expectation PropagationExpectation Propagation (EP) : optimize KL locally

this KL is harder since we’re taking E [.] wrt P
no nice global solution for Q “falls out”
must sequentially tweak each qc (match moments)
Q covers all modes so it overestimates support

P > 0 forces  Q > 0



αα -- divergencesdivergences
• The 2 basic KL divergences are special cases of

• Dα(p||q)  is non-negative and 0  iff p = q
– when α  � - 1  we get  KL(P||Q)

– when α  � +1  we get  KL(Q||P)

– when α = 0 D0 (P||Q) is proportional to HellingerHellinger’’ss distance (metric)

So many variational approximations must exist, one for each α !



for more on αα -- divergencesdivergences

Shun-ichi Amari



for specific examples of

See Chapter 10Chapter 10
Variational Single Gaussian

Variational Linear Regression

Variational Mixture of Gaussians

Variational Logistic Regression

Expectation Propagation (α = -1)

1±=α



Hierarchy of AlgorithmsHierarchy of Algorithms
(based on α and structuring)

BP
• fully factorized
• KL(p||q)

EP
• exp family
• KL(p||q)

FBP
• fully factorized
• Dα(p||q)

Power EP
• exp family
• Dα(p||q)

MF
• fully factorized
• KL(q||p)

TRW
• fully factorized
• Dα(p||q) α > 1

Structured MF
• exp family
• KL(q||p)

by Tom Minka



Variational MFVariational MF
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Variational MFVariational MF
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Equality is obtained for  Q(x) = P(x)    (all Q admissible)
Using any other  Q yields a lower bound on log Z

The slack in this bound is KL-divergence D(Q||P)

Goal:  restrict Q to a tractable subclass Q
optimize with supQ to tighten this bound 

note we’re (also) maximizing entropy H[Q]



Variational MFVariational MF
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Most common specialized family :

“log-linear models”

linear in parameters θ       (natural parameters of EFs)

clique potentials φ(x) (sufficient statistics of EFs)

Fertile ground for plowing  Convex AnalysisConvex Analysis
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The Old Testament            The New Testament

Convex AnalysisConvex Analysis



Variational MF for EFVariational MF for EF
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MM =  set of all moment parameters realizable under subclass Q

EF
notation



Variational MF for EFVariational MF for EF
So it looks like we are just optimizing a concave function 
(linear term + negative-entropy) over a convex set

������ ������	
��
���	�����	���������Yet it is hard ... Why? 

1. graph probability (being a measure) requires a very large 
number of marginalization constraints for consistency (leads 
to a typically beastly marginal polytope MM in the discrete case)

e.g., a complete 7-node graph’s polytope has over 108 facets !   

In fact, optimizing just the linear term alone can be hard

2. exact computation of entropy -A*(µ) is highly non-trivial      
(hence the famed Bethe & Kikuchi approximations)



Gibbs Sampling for Gibbs Sampling for IsingIsing
• Binary MRF   G = (V,E )   with pairwise clique potentials

1. pick a node s at random
2. sample u ~ Uniform(0,1)
3. update node s :

4. goto step 1
a slower stochastic version of ICM



Naive MF for Naive MF for IsingIsing
• use a variational mean parameter at each site

1. pick a node s at random
2. update its parameter :

3. goto step 1

• deterministic “loopy” message-passing

• how well does it work?   depends on θ



Graphical Models as EFGraphical Models as EF
•• GG(V,E)  with nodes

• sufficient stats :  

• clique potentials likewise for θ st

• probability

• log-partition

• mean parameters



• For any mean parameter µ where θ (µ ) is the corresponding natural parameter

• the log-partition function has this variational representation  

• this supremum is achieved at the moment-matching value of µ

Variational Theorem for EFVariational Theorem for EF

in relative interior of M

not in the closure of M



• Main Idea: (convex) functions can be “supported” (lower-bounded) by a 
continuum of lines (hyperplanes) whose intercepts create a conjugate dual
of the original function (and vice versa)

conjugate dual of A 

conjugate dual of A*

Note that A** = A   (iff A is convex)

LegendreLegendre--FenchelFenchel DualityDuality



Dual Map for EFDual Map for EF

Two equivalent parameterizations of the EF
Bijective mapping between Ω and the interior of M
Mapping is defined by the gradients of A and its dual A*

Shape & complexity of M depends on X and size and structure of G



•• GG(V,E)  =  graph with discrete nodes   

•• Then MM =  convex hull of all φ (x)

• equivalent to intersecting half-spaces   aT µ > b

• difficult to characterize for large G

• hence difficult to optimize over

• interior of MM is 1-to-1 with Ω

Marginal PolytopeMarginal Polytope



•• GG(V,E)  =  a single Bernoulli node      φ(x) = x

• density

• log-partition                                          (of course we knew this)

• we know A*  too, but let’s solve for it variationally

• differentiate à stationary point
• rearrange to                                     ,  substitute into  A*

The Simplest GraphThe Simplest Graph x

Note: we found both the mean
parameter and the lower bound 
using the variational method



•• GG(V,E)  =  2 connected Bernoulli nodes   

•
• moments

•

• variational problem

• solve (it’s still easy!)

The 2The 2ndnd Simplest GraphSimplest Graph x2x1

moment constraints



3 nodes � 16 constraints

# of constraints blows up real fast:
7 nodes  � 200,000,000+ constraints 

hard to keep track of valid µ’s
(i.e., the full shape and extent of M )

no more checking our results against 
closed-forms expressions that we 
already knew in advance! 

unless G remains a tree, entropy A*
will not decompose nicely, etc

The 3The 3rdrd Simplest GraphSimplest Graph x2x1

x3



• tractable subgraph H = (V,0)

• fully-factored distribution

• moment space

• entropy is additive : -

• variational problem for A(θ )

• using coordinate ascent :

Variational MF for Variational MF for IsingIsing



• MMtrtr is a non-convex inner approximation

• optimizing over MMtrtr must then yield a lower bound

Variational MF for Variational MF for IsingIsing
MMtr ⊂

what causes this funky curvature?



• suppose we have a tree  G = (V,T )
• useful factorization for trees

• entropy becomes

- singleton terms

- pairwise terms

Factorization with TreesFactorization with Trees

Mutual Information 



• pretend entropy factorizes like a tree  (Bethe approximation)

• define pseudo marginals

Variational MF for Variational MF for LoopyLoopy GraphsGraphs

must impose these 
normalization 
and marginalization
constraints

• define local polytope L(G ) obeying these constraints

• note that                                   for any G

with equality only for trees :  M(G ) = L(G )

)()( GLGM ⊆



L(G) is an outer polyhedral approximation  

solving this Bethe Variational Problem we get the LBP eqs !

Variational MF for Variational MF for LoopyLoopy GraphsGraphs

so fixed points of LBP are the 
stationary points of the BVP

this not only illuminates what was originally an educated “hack” (LBP)
but suggests new convergence conditions and improved algorithms (TRW)



see ICMLsee ICML’’2008 Tutorial2008 Tutorial



• SMF can also be cast in terms of “Free Energy” etc

• Tightening the var bound  =  min KL divergence

• Other schemes (e.g, “Variational Bayes”)  =  SMF

- with additional conditioning (hidden, visible, parameter)

• Solving variational problem gives both µ and A(θ )

• Helps to see problems through lens of Var Analysis

SummarySummary



Matrix of Inference Methods

EP, variational EM, VB, 
NBP, Gibbs

EP, EM, VB, 
NBP, Gibbs

EKF, UKF, moment 
matching (ADF)

Particle filter

Other

Loopy BP
Gibbs

Jtree = sparse linear 
algebra

BP = Kalman filterGaussian

Loopy BP, mean field, 
structured variational, 

EP, graph-cuts
Gibbs

VarElim, Jtree, 
recursive 

conditioning

BP = forwards
Boyen-Koller (ADF), 

beam search

Discrete

High treewidthLow treewidthChain (online)

Exact Deterministic approximation Stochastic approximation

BP = Belief Propagation, EP = Expectation Propagation, ADF = Assumed Density Filtering, EKF = Extended Kalman Filter, 
UKF = unscented Kalman filter, VarElim = Variable Elimination, Jtree= Junction Tree, EM = Expectation Maximization, 
VB = Variational Bayes, NBP = Non-parametric BP

by Kevin Murphy
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