Probabilistic Graphical Models

Lecture 13 – Loopy Belief Propagation

CS/CNS/EE 155 Andreas Krause

Announcements

- Homework 3 out
 - Lighter problem set to allow more time for project
- Next Monday: Guest lecture by Dr. Baback
 Moghaddam from the JPL Machine Learning Group
- PLEASE fill out feedback forms
 - This is a new course
 - Your feedback can have major impact in future offerings!!

HMMs / Kalman Filters

- Most famous Graphical models:
 - Naïve Bayes model
 - Hidden Markov model
 - Kalman Filter

- Hidden Markov models
 - Speech recognition
 - Sequence analysis in comp. bio
- Kalman Filters control
 - Cruise control in cars
 - GPS navigation devices
 - Tracking missiles..
- Very simple models but very powerful!!

HMMs / Kalman Filters

- $X_1, ..., X_T$: Unobserved (hidden) variables
- Y₁,...,Y_T: Observations
- HMMs: X_i Multinomial, Y_i arbitrary
- Kalman Filters: X_i, Y_i Gaussian distributions
 - Non-linear KF: X_i Gaussian, Y_i arbitrary

Hidden Markov Models

- Inference:
 - In principle, can use VE, JT etc.
 - New variables X_t, Y_t at each time step → need to rerun
- Bayesian Filtering:
 - Suppose we already have computed $P(X_t | y_{1,...,t})$
 - Want to efficiently compute P(X_{t+1} | y_{1,...,t+1})

Bayesian filtering

- Start with P(X₁)
- At time t
 - Assume we have $P(X_t | y_{1...t-1})$
 - Condition: $P(X_t | y_{1...t})$

- P(Xt(YI...t) & P(Xt(YI...t-1)) P(Yt(Xt(YI...t-1))) cond.ind. P(Yt(Kt))
- Prediction: $P(X_{t+1}, X_t | y_{1...t})$
 - $P(X_{t+1}, X_{t} | \mathcal{Y}_{1-t}) = P(X_{t} | \mathcal{Y}_{1-t}) \cdot P(X_{t+1} | \mathcal{X}_{t} | \mathcal{Y}_{1-t})$ $= P(X_{t+1} | \mathcal{X}_{t})$
- "Rollup"
- Marginalization: P(X_{t+1} | y_{1...t})
 - $P(X_{t+1}|\mathcal{Y}_{l-t}) = \sum_{X_{t}} P(X_{t+1}|X_{k}|\mathcal{Y}_{l-t})$

Kalman Filters (Gaussian HMMs)

- X₁,...,X_T: Location of object being tracked
- Y₁,...,Y_T: Observations
- P(X₁): Prior belief about location at time 1
- P(X_{t+1} | X_t): "Motion model"
 - How do I expect my target to move in the environment?
 - Represented as CLG: $X_{t+1} = A X_t + N(0, \Sigma_M)$
- P(Y_t | X_t): "Sensor model"
 - What do I observe if target is at location X_t?
 - Represented as CLG: $Y_t = H X_t + N(0, \Sigma_O)$

Bayesian Filtering for KFs

Can use Gaussian elimination to perform inference in "unrolled" model

- Start with prior belief P(X₁)
 At every timestep have belief P(X_t | y_{1:t-1})
 Condition on observation: P(X_t | y_{1:t})
 Multiply Libel: hosd
 Predict (multiply motion model): P(X_{t+1}, X_t | y_{1:t})
 - "Roll-up" (marginalize prev. time): P(X_{t+1} | y_{1.t})

What if observations not "linear"?

- Linear observations:
 - $Y_t = H X_t + noise$
- Nonlinear observations:

"Motion detector": $Y_{t} = 1$ if $X_{t} \in \mathbb{R}$ = 0 otherwise

Incorporating Non-gaussian observations

- Nonlinear observation \rightarrow P(Y_t | X_t) not Gaussian \otimes
- Make it Gaussian! [©]
- First approach: Approximate P(Y_t | X_t) as CLG
 - Linearize $P(Y_t | X_t)$ around current estimate $E[X_t | y_{1..t-1}]$
 - Known as Extended Kalman Filter (EKF)
 - Can perform poorly if P(Y_t | X_t) highly nonlinear
- Second approach: Approximate P(Y_t, X_t) as Gaussian
 - Takes correlation in X_t into account
 - After obtaining approximation, condition on Y_t=y_t (now a "linear" observation)

Factored dynamical models

So far: HMMs and Kalman filters

- What if we have more than one variable at each time step?
 - E.g., temperature at different locations, or road conditions in a road network?
 - ➔ Spatio-temporal models

Dynamic Bayesian Networks

At every timestep have a Bayesian Network

- Variables at each time step t called a "slice" S_t
- "Temporal" edges connecting S_{t+1} with S_t

Can we do efficient filtering in BNs?

Efficient inference in DBNs?

DBN

 $P(A_2, B_2, C_2, D_2)$ fally connected ::

Approximate inference in DBNs?

How can we find principled approximations that still allow efficient inference??

Assumed Density Filtering

- True marginal P(X_t) fully connected
- Want to find "simpler" distribution Q(X_t) such that P(X_t) \approx Q(X_t)
- Optimize over parameters of Q to make Q as "close" to P as possible
- Similar to incorporating non-linear observations in KF!
- More details later (variational inference)!

Big picture summary

States of the world, sensor measurements, ...

Graphical model

- Want to choose a model that ...
 - represents relevant statistical dependencies between variables
 - we can use to make inferences (make predictions, etc.)
 - we can learn from training data

What you have learned so far

Representation

- Bayesian Networks
- Markov Networks
- Conditional independence is key

Inference

- Variable Elimination and Junction tree inference
- Exact inference possible if graph has low treewidth

Learning

- Parameters: Can do MLE and Bayesian learning in Bayes
 Nets and Markov Nets if data fully observed
- Structure: Can find optimal tree

Representation

- Conditional independence = Factorization
- Represent factorization/independence as graph
 - Directed graphs: Bayesian networks
 - Undirected graphs: Markov networks
- Typically, assume factors in exponential family (e.g., Multinomial, Gaussian, ...)
- So far, we assumed all variables in the model are known
 - In practice
 - Existence of variables can depend on data
 - Number of variables can grow over time
 - We might have hidden (unobserved variables)!

Inference

- Key idea: Exploit factorization (distributivity)
- Complexity of inference depends on treewidth of underlying model
 - Junction tree inference "only" exponential in treewidth
- In practice, often have high treewidth
 - Always high treewidth in DBNs
 - ➔ Need approximate inference

Learning

- Maximum likelihood estimation
 - In BNs: independent optimization for each CPT (decomposable score)
 - In MNs: Partition function couples parameters, but can do gradient ascent (no local optima!)
- Bayesian parameter estimation
 - Conjugate priors convenient to work with
- Structure learning
 - NP-hard in general
 - Can find optimal tree (Chow Liu)
- So far: Assumed all variables are observed
 - In practice: often have missing data

The "light" side

Assumed

- everything fully observable
- Iow treewidth
- no hidden variables
- Then everything is nice I are the second second
 - Efficient exact inference in large models
 - Optimal parameter estimation without local minima
 - Can even solve some structure learning tasks exactly

The "dark" side

represent

States of the world, sensor measurements, ...

Graphical model

- In the real world, these assumptions are often violated..
- Still want to use graphical models to solve interesting problems..

Remaining Challenges

- Representation:
 - Dealing with hidden variables
- Approximate inference for high-treewidth models
- Dealing with missing data
- This will be focus of remaining part of the course!

Recall: Hardness of inference

- Computing conditional distributions:
 - Exact solution: **#P-complete**
 - Approximate solution: NP-hard
- Maximization:
 - MPE: NP-complete
 - MAP: NP^{PP}-complete

Inference

- Can exploit structure (conditional independence) to efficiently perform exact inference in many practical situations
 - Whenever the graph is low treewidth
 - Whenever there is context-specific independence
 - Several other special cases
- For BNs where exact inference is not possible, can use algorithms for approximate inference
 - Coming up now!

Approximate inference

Three major classes of general-purpose approaches

Message passing

• E.g.: Loopy Belief Propagation (today!)

Inference as optimization

- Approximate posterior distribution by simple distribution
- Mean field / structured mean field

Sampling based inference

- Importance sampling, particle filtering
- Gibbs sampling, MCMC
- Many other alternatives (often for special cases)

Recall: Message passing in Junction trees

6:JSL

Messages between clusters:

 $S_{q-76}(J,SL) = \sum_{q} TT(g,J,SL) \cdot S_{q-74}(g,S) \cdot S_{q-74}(g,J)$

BP on Tree Pairwise Markov Nets

- Suppose graph is given as tree pairwise Markov net
- Don't need a junction tree!
 - Graph is already a tree!
- Example message:

С

$$S_{G\rightarrow L}(L) = \sum_{g} T_{GL}(g,L) \cdot \overline{T_{G}}(g) S_{D\rightarrow G}(g) S_{I\rightarrow G}(g)$$

• More generally: $\int_{\lambda \to j} (x_j) = \sum_{X_{\lambda}} \prod_{\lambda \neq j} (x_i, x_j) \prod_{\lambda \neq j} (x_{\lambda}) \prod_{S \neq \lambda} S_{S \neq \lambda} (x_{\lambda})$ $S \in N(\lambda) \setminus S = \sum_{X_{\lambda}} \sum_{\lambda \neq j} (x_{\lambda}) \prod_{S \neq \lambda} S_{S \neq \lambda} (x_{\lambda})$

Theorem: For trees, get correct answer!

Loopy BP on arbitrary pairwise MNs

- What if we apply BP to a graph with loops?
 - Apply BP and hope for the best..

$$\delta_{i \to j}(X_j) = \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \to i}(x_i)$$

Will not generally converge..

S

(¬

- If it converges, will not necessarily get correct marginals
 - $\hat{\mathcal{P}}(X_i) \propto \prod_{S \in N(i)} \delta_{S \to i}(X_i)$
- However, in practice, answers often still useful!

Practical aspects of Loopy BP

Messages product of numbers ≤ 1

$$\delta_{i \to j}(X_j) = \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \to i}(x_i)$$

- On loopy graphs, repeatedly multiply same factors \rightarrow products converge to 0 (numerical problems)
- Solution:
 - Renormalize!

$$\delta_{i \to j}(X_j) = \frac{1}{Z_{i \to j}} \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \to i}(x_i)$$

Does not affect outcome:

Does not affect outcome:

$$\hat{P}(X_i) \propto \prod_{s \in N(i)} S_{s \to i}(X_i) \cdot (2_{i \to o})$$
Normalization doesn't matter

 $\hat{P}(X_i) \propto \prod_{s \in N(i)} S_{s \to i}(X_i) \cdot (2_{i \to o})$

Loopy BP multiplies same potentials multiple times
 BP often overconfident

When do we stop?

Messages

$$\delta_{i \to j}^{(t+1)}(X_j) = \frac{1}{Z_{i \to j}} \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \to i}^{(t)}(x_i)$$

Stop if messages "don't change much"

$$\int \int_{i-3j}^{(t+1)} - \int_{i-3j}^{(t+1)} | \leq \epsilon \quad \forall i,j$$

Does Loopy BP always converge?

No! Can oscillate!

 Typically, oscillation the more severe the more "deterministic" the potentials

What can we do to make BP converge?

Danping:

If we need to dampen, onswer will most likely be bat

Can we prove convergence of BP?

- Yes, for special types of graphs (e.g., random graphs arising in coding)
- Sometimes can prove that message update "contracts"

What if we have non-pairwise MNs?

- Two approaches:
 - Convert to pairwise MN (possibly exponential blowup)
 - Perform BP on factor graph

BP on factor graphs

Messages from nodes to factors

$$S_{X \to \phi}(X) = \frac{1}{Z} \prod_{\substack{i \in N(K) \setminus \xi \neq i}} S_{\phi' \to X}(K)$$

Messages from factors to nodes

 $S_{\phi \to \chi}(x) = \frac{1}{2} \sum_{x_{\phi} \sim \chi} \phi(x_{\phi}) \prod_{\substack{X' \in N(\phi) \setminus \{x\}}} S_{\chi' \to \phi}(x)$

Loopy BP vs Junction tree

Both BP and JT inference are "ends of a spectrum"

Other message passing algorithms

- Gaussian Belief propagation
- BP based on particle filters (see sampling)
- Expectation propagation
- ...