Probabilistic Graphical Models

Lecture 13 - Loopy Belief Propagation

CS/CNS/EE 155
Andreas Krause

Announcements

- Homework 3 out
- Lighter problem set to allow more time for project
- Next Monday: Guest lecture by Dr. Baback Moghaddam from the JPL Machine Learning Group
- PLEASE fill out feedback forms
- This is a new course
- Your feedback can have major impact in future offerings!!

HMMs / Kalman Filters

- Most famous Graphical models:
- Naïve Bayes model

- Hidden Markov model
- Kalman Filter
- Hidden Markov models
- Speech recognition
- Sequence analysis in comp. bio
- Kalman Filters control
- Cruise control in cars
- GPS navigation devices
- Tracking missiles..
- Very simple models but very powerful!!

HMMs / Kalman Filters

- X_{1}, \ldots, X_{T} : Unobserved (hidden) variables
- Y_{1}, \ldots, Y_{T} : Observations
- HMMs: X_{i} Multinomial, Y_{i} arbitrary
- Kalman Filters: X_{i}, Y_{i} Gaussian distributions
- Non-linear KF: X_{i} Gaussian, Y_{i} arbitrary

Hidden Markov Models

- Inference:
- In principle, can use VE, JT etc.
- New variables X_{t}, Y_{t} at each time step \rightarrow need to rerun

- Bayesian Filtering:
- Suppose we already have computed $P\left(X_{t} \mid y_{1, \ldots, t}\right)$
- Want to efficiently compute $P\left(X_{t+1} \mid y_{1, \ldots, t+1}\right)$

Bayesian filtering

- Start with $\mathrm{P}\left(\mathrm{X}_{1}\right)$
- At time t
- Assume we have $P\left(\underline{X_{t} \mid y_{1 . . t-1}}\right)$
- Condition: $P\left(X_{t} \mid y_{1 . . . t}\right)$

$$
\begin{aligned}
& P\left(X_{t} \mid Y_{1 \ldots t}\right) \notin P\left(X_{t} \mid Y_{1, t-1}\right) \underbrace{P\left(Y_{t}\left|X_{t}\right| Y_{1, t-1}\right)}_{\text {cond.ind. } P\left(Y_{t} \mid X_{t}\right)}
\end{aligned}
$$

- Prediction: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1}, \mathrm{X}_{\mathrm{t}} \mid \mathrm{y}_{1 \ldots \mathrm{t}}\right)$

$$
P\left(X_{t+1}, X_{t} \mid y_{1, t}\right)=P\left(X_{t} \mid y_{1, t}\right) \cdot \underbrace{P\left(X_{t+1} \mid X_{t}, y_{1, t}\right)}_{=P\left(X_{t+1} \mid X_{t}\right)}
$$

- Marginalization: $P\left(X_{t+1} \mid y_{1 . . . t}\right)$

$$
P\left(x_{t+1} \mid y_{1} \ldots t\right)=\sum_{x_{\pi}} P\left(x_{t+1,} x_{t} \mid y_{1}, . t\right)
$$

Kalman Filters (Gaussian HMMs)

- $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{T}}$: Location of object being tracked
- Y_{1}, \ldots, Y_{T} : Observations
- $P\left(X_{1}\right)$: Prior belief about location at time 1
- $P\left(X_{t+1} \mid X_{t}\right)$: "Motion model"
- How do I expect my target to move in the environment?
- Represented as CLG: $\mathrm{X}_{\mathrm{t}+1}=\mathrm{A} \mathrm{X}_{\mathrm{t}}+\mathrm{N}\left(0, \Sigma_{M}\right)$
- $P\left(Y_{t} \mid X_{t}\right)$: "Sensor model"
- What do I observe if target is at location X_{t} ?
- Represented as CLG: $\mathrm{Y}_{\mathrm{t}}=\mathrm{HX} \mathrm{X}_{\mathrm{t}}+\mathrm{N}\left(0, \Sigma_{O}\right)$

Bayesian Filtering for KFs

- Can use Gaussian elimination to perform inference in "unrolled" model

- Start with prior belief $\mathrm{P}\left(\mathrm{X}_{1}\right)$
- At every timestep have belief $P\left(X_{t} \mid \mathrm{Y}_{1: \mathrm{t}-1}\right) \quad$ "sensor mode"
- Condition on observation: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{Y}_{1 . t}\right) \nprec$ Multiply likalihard
- Predict (multiply motion model): $P\left(X_{t+1}, X_{t} \mid y_{1: t}\right)=\begin{gathered}\text { Multiply } \\ \text { motion mad }\end{gathered}$
- "Roll-up" (marginalize prev. time): $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{y}_{1: t}\right)$

What if observations not "linear"?

- Linear observations:
- $Y_{t}=H X_{t}$ + noise
- Nonlinear observations:
"Motion defector": $Y_{\pi}=1$ if $X_{t} \in R$
$=0$ otherwise

Incorporating Non-gaussian observations

- Nonlinear observation $\rightarrow P\left(Y_{t} \mid X_{t}\right)$ not Gaussian :
- Make it Gaussian! ©
- First approach: Approximate $P\left(Y_{t} \mid X_{t}\right)$ as CLG
- Linearize $P\left(Y_{t} \mid X_{t}\right)$ around current estimate $E\left[X_{t} \mid y_{1 . . t-1}\right]$
- Known as Extended Kalman Filter (EKF)
- Can perform poorly if $P\left(Y_{t} \mid X_{t}\right)$ highly nonlinear
- Second approach: Approximate $\mathrm{P}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}\right)$ as Gaussian
- Takes correlation in X_{t} into account
- After obtaining approximation, condition on $Y_{t}=y_{t}$ (now a "linear" observation)

Factored dynamical models

- So far: HMMs and Kalman filters

- What if we have more than one variable at each time step?
- E.g., temperature at different locations, or road conditions in a road network?
\rightarrow Spatio-temporal models

Dynamic Bayesian Networks

- At every timestep have a Bayesian Network

- Variables at each time step t called a "slice" S_{t}
- "Temporal" edges connecting S_{t+1} with S_{t}

Flow of influence in DBNs

- Can we do efficient filtering in BNs?

Efficient inference in DENs?

$$
D B N
$$

$$
P\left(A_{2}, B_{2}, C_{2}, D_{2}\right)
$$

falls connected \because

Approximate inference in DBNs?

Marginals at time 2 Appraximate maginal

How can we find principled approximations that still allow efficient inference??

Assumed Density Filtering

True marginal

Approximate marginal

$$
\begin{aligned}
& \text { Formallyy: } \\
& Q^{R}=\operatorname{argmin} K L(P \| Q) \\
& Q \\
& \text { mosere later }
\end{aligned}
$$

- True marginal $P\left(X_{t}\right)$ fully connected
- Want to find "simpler" distribution $Q\left(X_{t}\right)$ such that $P\left(X_{t}\right) \approx Q\left(X_{t}\right)$
- Optimize over parameters of Q to make Q as "close" to P as possible
- Similar to incorporating non-linear observations in KF!
- More details later (variational inference)!

Big picture summary

States of the world, sensor measurements, ...

Graphical model

- Want to choose a model that ...
- represents relevant statistical dependencies between variables
- we can use to make inferences (make predictions, etc.)
- we can learn from training data

What you have learned so far

- Representation
- Bayesian Networks
- Markov Networks
- Conditional independence is key
- Inference
- Variable Elimination and Junction tree inference
- Exact inference possible if graph has low treewidth
- Learning
- Parameters: Can do MLE and Bayesian learning in Bayes Nets and Markov Nets if data fully observed
- Structure: Can find optimal tree

Representation

- Conditional independence = Factorization
- Represent factorization/independence as graph
- Directed graphs: Bayesian networks
- Undirected graphs: Markov networks
- Typically, assume factors in exponential family (e.g., Multinomial, Gaussian, ...)
- So far, we assumed all variables in the model are known
- In practice
- Existence of variables can depend on data
- Number of variables can grow over time
- We might have hidden (unobserved variables)!

Inference

- Key idea: Exploit factorization (distributivity)
- Complexity of inference depends on treewidth of underlying model
- Junction tree inference "only" exponential in treewidth
- In practice, often have high treewidth
- Always high treewidth in DBNs
\rightarrow Need approximate inference

Learning

- Maximum likelihood estimation
- In BNs: independent optimization for each CPT (decomposable score)
- In MNs: Partition function couples parameters, but can do gradient ascent (no local optima!)
- Bayesian parameter estimation
- Conjugate priors convenient to work with
- Structure learning
- NP-hard in general
- Can find optimal tree (Chow Liu)
- So far: Assumed all variables are observed
- In practice: often have missing data

The "light" side

- Assumed
- everything fully observable
- low treewidth
- no hidden variables
- Then everything is nice $)$
- Efficient exact inference in large models
- Optimal parameter estimation without local minima
- Can even solve some structure learning tasks exactly

The "dark" side

States of the world, sensor measurements, ...

Graphical model

- In the real world, these assumptions are often violated..
- Still want to use graphical models to solve interesting problems..

Remaining Challenges

- Representation:
- Dealing with hidden variables
- Approximate inference for high-treewidth models
- Dealing with missing data
- This will be focus of remaining part of the course!

Recall: Hardness of inference

- Computing conditional distributions:
- Exact solution: \#P-complete
- Approximate solution: NP-hard
- Maximization:
- MPE: NP-complete
- MAP: NP ${ }^{\text {PP }}$-complete

Inference

- Can exploit structure (conditional independence) to efficiently perform exact inference in many practical situations
- Whenever the graph is low treewidth
- Whenever there is context-specific independence
- Several other special cases
- For BNs where exact inference is not possible, can use algorithms for approximate inference
- Coming up now!

Approximate inference

- Three major classes of general-purpose approaches
- Message passing
- E.g.: Loopy Belief Propagation (today!)
- Inference as optimization
- Approximate posterior distribution by simple distribution
- Mean field / structured mean field
- Sampling based inference
- Importance sampling, particle filtering
- Gibbs sampling, MCMC
- Many other alternatives (often for special cases)

Recall: Message passing in Junction trees

BP on Tree Pairwise Markov Nets

- More generally:

$$
\delta_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \pi_{i j}\left(x_{i}, x_{j}\right) \pi_{i}\left(x_{i}\right) \prod_{S \in N(i) \backslash S_{j} j} \delta_{i}\left(x_{i}\right)
$$

- Theorem: For trees, get correct answer!

Loopy BP on arbitrary pairwise MNs

- What if we apply BP to a graph with loops?

- Apply BP and hope for the best..

$$
\delta_{i \rightarrow j}\left(X_{j}\right)=\sum_{x_{i}} \pi_{i}\left(x_{i}\right) \pi_{i, j}\left(x_{i}, X_{j}\right) \prod_{s \in N(i) \backslash\{j\}} \delta_{s \rightarrow i}\left(x_{i}\right)
$$

- Will not generally converge..
- If it converges, will not necessarily get correct marginals

$$
\hat{P}\left(x_{i}\right) \propto \prod_{S \in N(i)} \delta_{s \rightarrow i}\left(x_{i}\right)
$$

- However, in practice, answers often still useful!

Practical aspects of Loopy BP

- Messages product of numbers ≤ 1

$$
\delta_{i \rightarrow j}\left(X_{j}\right)=\sum_{x_{i}} \pi_{i}\left(x_{i}\right) \pi_{i, j}\left(x_{i}, X_{j}\right) \prod_{s \in N(i) \backslash\{j\}} \delta_{s \rightarrow i}\left(x_{i}\right)
$$

- On loopy graphs, repeatedly multiply same factors \rightarrow products converge to 0 (numerical problems)
- Solution:
- Renormalize!

$$
\delta_{i \rightarrow j}\left(X_{j}\right)=\frac{1}{Z_{i \rightarrow j}} \sum_{x_{i}} \pi_{i}\left(x_{i}\right) \pi_{i, j}\left(x_{i}, X_{j}\right) \prod_{s \in N(i) \backslash\{j\}} \delta_{s \rightarrow i}\left(x_{i}\right)
$$

- Does not affect outcome:

$$
\hat{P}\left(x_{i}\right) \propto \prod_{\operatorname{sen}(i)} \delta_{s \rightarrow i}\left(x_{i}\right) \cdot\left(z_{i \rightarrow \delta_{j}}\right)
$$

Behavior of BP

- Loopy BP multiplies same potentials multiple times
\rightarrow BP often overconfident

When do we stop?

- Messages

$$
\delta_{i \rightarrow j}^{(t+1)}\left(X_{j}\right)=\frac{1}{Z_{i \rightarrow j}} \sum_{x_{i}} \pi_{i}\left(x_{i}\right) \pi_{i, j}\left(x_{i}, X_{j}\right) \prod_{s \in N(i) \backslash\{j\}} \delta_{s \rightarrow i}^{(t)}\left(x_{i}\right)
$$

Stop if messages "don'th change mach"

$$
\left|\delta_{i-j j}^{(t+1)}-\delta_{i \rightarrow j}^{(t)}\right| \leq \varepsilon \quad \forall i, j
$$

Does Loopy BP always converge?

- No! Can oscillate!
- Typically, oscillation the more severe the more "deterministic" the potentials

Graphs from K. Murphy UAI ‘99

What can we do to make BP converge?

Dan ping:

$$
\begin{aligned}
& \hat{\delta}_{i \rightarrow j}^{(A+1)}=(1-\alpha) \delta_{i \rightarrow j}^{(A+1)}+\alpha \hat{\delta}_{i \rightarrow j}^{(A)} \\
& \uparrow \\
& \text { What I sad } \\
& \text { "Corned" BC } \\
& \text { message } \\
& \text { What I sent } \\
& \text { last time }
\end{aligned}
$$

If we need to dampen, answer will most likely be bat

Can we prove convergence of BP?

- Yes, for special types of graphs (e.g., random graphs arising in coding)
- Sometimes can prove that message update "contracts"

What if we have non-pairwise MNs?

- Two approaches:
- Convert to pairwise MN (possibly exponential blowup)
- Perform BP on factor graph

BP on factor graphs

- Messages from nodes to factors

$$
\delta_{x \rightarrow \phi}(x)=\frac{1}{z} \prod_{\phi^{\prime} \in N(x) \backslash\{\phi\}} \delta_{\phi^{\prime} \rightarrow x}(x)
$$

- Messages from factors to nodes

$$
\delta_{\phi \rightarrow x}(x)=\frac{1}{z} \sum_{x_{\phi^{2}}} \phi\left(x_{\phi}\right) \prod_{x^{\prime} \in N(\phi)\left(\left\{_{x}\right\}\right.} \delta_{x^{\prime} \rightarrow \phi}(x)
$$

Loopy BP vs Junction tree

Both BP and JT inference are "ends of a spectrum"

Other message passing algorithms

- Gaussian Belief propagation
- BP based on particle filters (see sampling)
- Expectation propagation
- ...

