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Announcements

¢ Homework 3 out

® Lighter problem set to allow more time for project

* Next Monday: Guest lecture by Dr. Baback
Moghaddam from the JPL Machine Learning Group

@ PLEASE fill out feedback forms

@ This is a new course

® Your feedback can have major impact in future offerings!!



HMMs / Kalman Filters

® Most famous Graphical models: SRS
S HO

* Naive Bayes model
¢ Hidden Markov model
¢ Kalman Filter

¢ Hidden Markov models

® Speech recognition

® Sequence analysis in comp. bio
¢ Kalman Filters control

® Cruise control in cars

® GPS navigation devices

® Tracking missiles..

® Very simple models but very powerful!!



HMMs / Kalman Filters

@ X,-- X1 Unobserved (hidden) variables
®Y,,..Y:: Observations
® HMMs: X: Multinomial, Y, arbitrary

® Kalman Filters: X, Y, Gaussian distributions
* Non-linear KF: X, Gaussian, Y, arbitrary



Hidden Markov Models

? |Inference: @ @ @ @ @ @

® |n principle, can use VE, JT etc.

* New variables X,, Y, at @ @ @ Q @ @

each time step = need to rerun
¢ Bayesian Filtering:
® Suppose we already have computed P(X, | y; )
* Want to efficiently compute P(X,,; | y; 1)



Bayesian filtering

@ Start with P(X,) 000010

2 Attime t

® Assume we have P(X; | y; {4) @ @ @ Q @ @

* Condition: P(X, | y, )
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® Prediction: P(X,,, X, | V1 4)
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® Marginalization: P(Xt+1 | Vl,__t)
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Kalman Filters (Gaussian HMMs)

® Xy,...,X: Location of object being tracked

®Y,,..Y:: Observations
® P(X,): Prior belief about location at time 1
® P(X.,;|X,): “Motion model”

* How do | expect my target to move in the environment?
® Represented as CLG: X,,; =A X, +N(0, X))

* P(Y, | X,): “Sensor model”
¢ What do | observe if target is at location X,?
® Represented as CLG: Y, = H X, + N(O, X))
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Bayesian Filtering for KFs

® Can use Gaussian elimination to perform inference in

“unrolled” model

® Start with prior belief P(X,) / /\/(’(t/' D At)

° At every timestep have belief P(X, | yy...q1)  “semtor malg!
* Condition on observation: P(X, | y;.,) &~ MedFily %&ﬁ/wa,
® Predict (multiply motion model): P(X,,X; | Y1..) &€ mtﬁafif”w,(

* “Roll-up” (marginalize prev. time): P(X.,; | Y1.1)



What if observations not “linear”?

? Linear observations:
* Y. =H X, + noise

@ Nonlinear observations:
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Incorporating Non-gaussian observations

® Nonlinear observation = P(Y, | X,) not Gaussian ®
® Make it Gaussian! ©
® First approach: Approximate P(Y, | X,) as CLG

® Linearize P(Y, | X,) around current estimate E[X, | y; 4]
® Known as Extended Kalman Filter (EKF)
® Can perform poorly if P(Y, | X,) highly nonlinear

® Second approach: Approximate P(Y,, X,) as Gaussian
® Takes correlation in X, into account

* After obtaining approximation, condition on Y,=y,
(now a “linear” observation)
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Factored dynamical models
® So far: HMMs and Kalman filters

@@@@@
W ® ® W ® &

¢ What if we have more than one variable at each time
step?

¢ E.g., temperature at different locations, or road conditions
in a road network?

=» Spatio-temporal models
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Dynamic Bayesian Networks

¢ At every timestep have a Bayesian Network

S/: (S: A,z B, ,E/§

® Variables at each time step t called a “slice” S,

|H

® “Temporal” edges connecting S,,; with S,
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Flow of influence in DBNs

‘ acceleration
XD speed
Q \)XD location

A LS v ALy x q
A,.LL, AZJ-LQ\/ AQJ_[_38< Lr( $ S

@ Can we do efficient filtering in BNs?
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Efficient inference in DBNs?
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Approximate inference in DBNs?

DBN Marginals at time 2 A pprxmate gl

o
W]
G
o

How can we find principled approximations that still
allow efficient inference??
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Assumed Density Filtering

True marginal Approximate marginal

o

9

o

Forenclly
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True marginal P(X,) fully connected

Want to find “simpler” distribution Q(X,) such that P(X,) =~ Q(X,)
Optimize over parameters of Q to make Q as “close” to P as possible
Similar to incorporating non-linear observations in KF!

More details later (variational inference)!
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Big picture summary

Irepresent

States of the world, =T
Sensor measurements, ... Graphical model

¢ Want to choose a model that ...
® represents relevant statistical dependencies between variables
® we can use to make inferences (make predictions, etc.)

® we can learn from training data
17



What you have learned so far

¢ Representation

® Bayesian Networks

® Markov Networks

® Conditional independence is key
® Inference

® Variable Elimination and Junction tree inference

® Exact inference possible if graph has low treewidth
¢ Learning

¢ Parameters: Can do MLE and Bayesian learning in Bayes
Nets and Markov Nets if data fully observed

® Structure: Can find optimal tree
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Representation

¢ Conditional independence = Factorization

® Represent factorization/independence as graph
® Directed graphs: Bayesian networks
® Undirected graphs: Markov networks

® Typically, assume factors in exponential family
(e.g., Multinomial, Gaussian, ...)

® So far, we assumed all variables in the model are known

® |n practice
® Existence of variables can depend on data
* Number of variables can grow over time

® \We might have hidden (unobserved variables)!
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Inference

¢ Key idea: Exploit factorization (distributivity)

¢ Complexity of inference depends on treewidth of
underlying model

® Junction tree inference “only” exponential in treewidth

® |n practice, often have high treewidth
® Always high treewidth in DBNs
=2 Need approximate inference
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Learning

¢ Maximum likelihood estimation

* In BNs: independent optimization for each CPT
(decomposable score)

® In MNs: Partition function couples parameters, but can do
gradient ascent (no local optima!)

¢ Bayesian parameter estimation

® Conjugate priors convenient to work with

@ Structure learning
® NP-hard in general
® Can find optimal tree (Chow Liu)

® So far: Assumed all variables are observed

® |n practice: often have missing data 21



The “light” side

® Assumed
¢ everything fully observable
® |ow treewidth
® no hidden variables

® Then everything is nice ©
® Efficient exact inference in large models
® Optimal parameter estimation without local minima
® Can even solve some structure learning tasks exactly
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The “dark” sid

Irepresent

States of the world, i AR " — o e e
sensor measurements, ... Graphical model

® |n the real world, these assumptions are often
violated..

¢ Still want to use graphical models to solve interesting
problems..

23



Remaining Challenges

¢ Representation:
® Dealing with hidden variables

° Approg'!mate inference for high-treewidth models

@ Dealing with missing data

® This will be focus of remaining part of the course!
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Recall: Hardness of inference

® Computing conditional distributions:
® Exact solution: #P-complete
® Approximate solution: NP-hard

¢ Maximization:
* MPE: NP-complete
* MAP: NPPP-complete
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Inference

® Can exploit structure (conditional independence) to
efficiently perform exact inference in many practical

situations
®* Whenever the graph is low treewidth
* Whenever there is context-specific independence

® Several other special cases

® For BNs where exact inference is not possible, can use
algorithms for approximate inference

® Coming up now!
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Approximate inference

Three major classes of general-purpose approaches

Message passing
* E.g.: Loopy Belief Propagation (today!)

e e —— e —

Inference as optimization

® Approximate posterior distribution by simple distribution
¢ Mean field / structured mean field

Sampling based inference

* Importance sampling, particle filtering
® Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Recall: Message passing in Junction trees

Messages between clusters:

Sere(952) "? ”(DrJISL) 3;@9 | og_éhﬂ
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BP on Tree Pairwise Markov Nets

(C @ Suppose graph is given as tree pairwise
Markov net

® Don’t need a junction tree!
OO ® Graph is already a tree!
(L)

¢ Example message:

D L0 IR W L

(H)

¢ More generally:
R /@b Oy T
\@ (S S ~(XJ:>:K- AN LS S )(4)

4 SN}

@/ . Theorem: For trees, get correct answer!
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Loopy BP on arbitrary pairwise MNs

¢ What if we apply BP to a graph with loops?
* Apply BP and hope for the best..

T sEN(i)\{7}

¢ Will not generally converge..

® |f it converges, will not necessarily get
correct marginals

N
’P(’(l} oL l\l é‘{qi(x;)
SeN( .
® However, in practice, answers often still

useful!
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Practical aspects of Loopy BP

® Messages product of numbers <1

z—>3 Zﬂ-z Ly 7ng Li, j) H 5s—>z(xz)
sEN(4)\{Jj}

® On loopy graphs, repeatedly multiply same factors
=>» products converge to 0 (numerical problems)
@ Solution:
® Renormalize!
1
0ij(Xj) = —— > milwimi(xs X;) | Gesi(m)
EREEE sEN(i)\ {4}
® Does not affect outcome: J Movmalyartin  doein, -

N otle
P(X«f\ < T 94 (KB (-,, sd

SeN()
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Behavior of BP

. P(X,=1)
17T BP estimate
True
posterior -7/
S5 T
0
>

Ilteration #

® Loopy BP multiplies same potentials multiple times
=» BP often overconfident
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When do we stop?

¢ Messages

1
510 (X)) = > mile)mig@n X)) [ 0l
MY sEN(i)\{7}

gthf "(C messege § ! c!m% c‘mm?(; tmao'tl'

(1) (k)

/ Cg‘,;—sJ' "'0(‘

( V . <
A2y /"’ < 449
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Does Loopy BP always converge?

@ No! Can oscillate!

¢ Typically, oscillation the more severe the more
“deterministic” the potentials
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Graphs from K. Murphy UAI ‘99




What can we do to make BP converge?

(oot B O \at ( Senct
me oo [ag/{' ‘Hm(

If we need o Jampen[ onswer will wodf lkly be bat
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Can we prove convergence of BP?

® Yes, for special types of graphs (e.g., random graphs
arising in coding)

® Sometimes can prove that message update
“contracts”
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What if we have non-pairwise MNs?

® Two approaches:
® Convert to pairwise MN (possibly exponential blowup)

® Perform BP on factor graph

37



BP on factor graphs

® Messages from nodes to factors

g\_ ()"‘L T<£<£~>;<

e NG

® Messages from factors to nodes

S =L [ Ses d (*
¢ x (+) 2 %xcb(x ¢ XGN[J))\&}(P )

¢ P P, ?,




Loopy BP vs Junction tree

g\mc nece
° 0 algos Live hent
/_/>

<

O vs.

Both BP and JT inference are “ends of a spectrum”

e8¢
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Other message passing algorithms

@ Gaussian Belief propagation
® BP based on particle filters (see sampling)
¢ Expectation propagation

‘ LN
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