
Probabilistic

Graphical Models

Lecture 13 – Loopy Belief Propagation

CS/CNS/EE 155

Andreas Krause



2

Announcements
Homework 3 out

Lighter problem set to allow more time for project

Next Monday: Guest lecture by Dr. Baback

Moghaddam from the JPL Machine Learning Group

PLEASE fill out feedback forms

This is a new course

Your feedback can have major impact in future offerings!!
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HMMs / Kalman Filters
Most famous Graphical models:

Naïve Bayes model

Hidden Markov model

Kalman Filter

Hidden Markov models

Speech recognition

Sequence analysis in comp. bio

Kalman Filters control

Cruise control in cars

GPS navigation devices

Tracking missiles..

Very simple models but very powerful!!
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HMMs / Kalman Filters

X1,…,XT: Unobserved (hidden) variables

Y1,…,YT: Observations

HMMs: Xi Multinomial, Yi arbitrary

Kalman Filters: Xi, Yi Gaussian distributions

Non-linear KF: Xi Gaussian, Yi arbitrary

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Hidden Markov Models
Inference:

In principle, can use VE, JT etc.

New variables Xt, Yt at

each time step � need to rerun

Bayesian Filtering:

Suppose we already have computed P(Xt | y1,…,t)

Want to efficiently compute P(Xt+1 | y1,…,t+1)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Bayesian filtering
Start with P(X1)

At time t

Assume we have P(Xt | y1…t-1)

Condition: P(Xt | y1…t)

Prediction: P(Xt+1, Xt | y1…t)

Marginalization: P(Xt+1 | y1…t)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Kalman Filters (Gaussian HMMs)

X1,…,XT: Location of object being tracked

Y1,…,YT: Observations

P(X1): Prior belief about location at time 1

P(Xt+1|Xt): “Motion model”

How do I expect my target to move in the environment?

Represented as CLG:  Xt+1 = A Xt + N(0, ΣM)

P(Yt | Xt): “Sensor model”

What do I observe if target is at location Xt?

Represented as CLG: Yt = H Xt + N(0, ΣO)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6



8

Bayesian Filtering for KFs
Can use Gaussian elimination to perform inference in 

“unrolled” model 

Start with prior belief P(X1)

At every timestep have belief P(Xt | y1:t-1)

Condition on observation: P(Xt | y1:t)

Predict (multiply motion model): P(Xt+1,Xt | y1:t)

“Roll-up” (marginalize prev. time): P(Xt+1 | y1:t)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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What if observations not “linear”?

Linear observations:

Yt = H Xt + noise

Nonlinear observations:
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Incorporating Non-gaussian observations

Nonlinear observation � P(Yt | Xt) not Gaussian �

Make it Gaussian! ☺

First approach: Approximate P(Yt | Xt) as CLG

Linearize P(Yt | Xt) around current estimate E[Xt | y1..t-1]

Known as Extended Kalman Filter (EKF)

Can perform poorly if P(Yt | Xt) highly nonlinear

Second approach: Approximate P(Yt, Xt) as Gaussian

Takes correlation in Xt into account

After obtaining approximation, condition on Yt=yt

(now a “linear” observation)
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Factored dynamical models
So far: HMMs and Kalman filters

What if we have more than one variable at each time 

step?

E.g., temperature at different locations, or road conditions 

in a road network?

� Spatio-temporal models

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Dynamic Bayesian Networks
At every timestep have a Bayesian Network

Variables at each time step t called a “slice” St

“Temporal” edges connecting St+1 with St

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3
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Flow of influence in DBNs

Can we do efficient filtering in BNs?

A1

S1

L1

A2

S2

L2

A3

S3

L3

A4

S4

L4

acceleration

speed

location
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Efficient inference in DBNs?

A1

B1

C1

D1

A2

B2

C2

D2
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Approximate inference in DBNs?

A1

B1

C1

A2

B2

C2

D1 D2

A2

B2

C2

D2

How can we find principled approximations that still

allow efficient inference??

DBN Marginals at time 2
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Assumed Density Filtering

True marginal P(Xt) fully connected 

Want to find “simpler” distribution Q(Xt) such that P(Xt) ≈ Q(Xt)

Optimize over parameters of Q to make Q as “close” to P as possible

Similar to incorporating non-linear observations in KF!

More details later (variational inference)!

At

Bt

Ct

Dt

At

Bt

Ct

Dt

True marginal Approximate marginal
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Big picture summary

Want to choose a model that …

represents relevant statistical dependencies between variables

we can use to make inferences (make predictions, etc.)

we can learn from training data
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What you have learned so far
Representation

Bayesian Networks

Markov Networks

Conditional independence is key

Inference

Variable Elimination and Junction tree inference

Exact inference possible if graph has low treewidth

Learning

Parameters: Can do MLE and Bayesian learning in Bayes

Nets and Markov Nets if data fully observed

Structure: Can find optimal tree
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Representation
Conditional independence = Factorization

Represent factorization/independence as graph

Directed graphs: Bayesian networks

Undirected graphs: Markov networks

Typically, assume factors in exponential family 

(e.g., Multinomial, Gaussian, …)

So far, we assumed all variables in the model are known

In practice

Existence of variables can depend on data

Number of variables can grow over time

We might have hidden (unobserved variables)!
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Inference
Key idea: Exploit factorization (distributivity)

Complexity of inference depends on treewidth of 

underlying model

Junction tree inference “only” exponential in treewidth

In practice, often have high treewidth

Always high treewidth in DBNs

� Need approximate inference
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Learning
Maximum likelihood estimation

In BNs:  independent optimization for each CPT 

(decomposable score)

In MNs: Partition function couples parameters, but can do 

gradient ascent (no local optima!)

Bayesian parameter estimation

Conjugate priors convenient to work with

Structure learning

NP-hard in general

Can find optimal tree (Chow Liu)

So far: Assumed all variables are observed

In practice: often have missing data



22

The “light” side
Assumed

everything fully observable

low treewidth

no hidden variables

Then everything is nice ☺

Efficient exact inference in large models

Optimal parameter estimation without local minima

Can even solve some structure learning tasks exactly
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The “dark” side

In the real world, these assumptions are often 

violated..

Still want to use graphical models to solve interesting 

problems..
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Remaining Challenges
Representation:

Dealing with hidden variables

Approximate inference for high-treewidth models

Dealing with missing data

This will be focus of remaining part of the course!
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Recall: Hardness of inference
Computing conditional distributions:

Exact solution: #P-complete

Approximate solution: NP-hard

Maximization:

MPE: NP-complete

MAP: NPPP-complete
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Inference
Can exploit structure (conditional independence) to 

efficiently perform exact inference in many practical 

situations

Whenever the graph is low treewidth

Whenever there is context-specific independence

Several other special cases

For BNs where exact inference is not possible, can use 

algorithms for approximate inference

Coming up now!
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Approximate inference
Three major classes of general-purpose approaches

Message passing

E.g.: Loopy Belief Propagation (today!)

Inference as optimization

Approximate posterior distribution by simple distribution

Mean field / structured mean field

Sampling based inference

Importance sampling, particle filtering

Gibbs sampling, MCMC

Many other alternatives (often for special cases)
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Recall: Message passing in Junction trees

Messages between clusters:
1: CD

2: DIG

3: GIS

4:GJSL

5:HGJ

6:JSL

C

D I

G S

L

J
H
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BP on Tree Pairwise Markov Nets
Suppose graph is given as tree pairwise
Markov net

Don’t need a junction tree!

Graph is already a tree!

Example message:

More generally:

Theorem: For trees, get correct answer!

C

D I

G S

L

J
H
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Loopy BP on arbitrary pairwise MNs

What if we apply BP to a graph with loops?

Apply BP and hope for the best..

Will not generally converge..

If it converges, will not necessarily get 

correct marginals

However, in practice, answers often still 

useful! 

C

D I

G S

L

J

H
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Practical aspects of Loopy BP
Messages product of numbers ≤ 1

On loopy graphs, repeatedly multiply same factors 

� products converge to 0 (numerical problems)

Solution:

Renormalize!

Does not affect outcome:
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Behavior of BP

Loopy BP multiplies same potentials multiple times

� BP often overconfident

X1

X2 X3

X4

.5

0

1
P(X1 = 1)

Iteration #

True

posterior

BP estimate
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When do we stop?
Messages
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Does Loopy BP always converge?

No! Can oscillate!

Typically, oscillation the more severe the more 

“deterministic” the potentials

Graphs from K. Murphy UAI ‘99
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What can we do to make BP converge?
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Can we prove convergence of BP?

Yes, for special types of graphs (e.g., random graphs 

arising in coding)

Sometimes can prove that message update 

“contracts”
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What if we have non-pairwise MNs?

Two approaches: 

Convert to pairwise MN (possibly exponential blowup)

Perform BP on factor graph

C

D I

G S

L

C D IG S L

CD DIG IGS SL

φ φ φ φ
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BP on factor graphs
Messages from nodes to factors

Messages from factors to nodes

C D IG S L

CD DIG IGS SL

φ φ φ φ
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Loopy BP vs Junction tree

Both BP and JT inference are “ends of a spectrum”

CD

DIG

GIS

GJSL

HGJ

JSL

C

D I

G S

L

J

H

vs.
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Other message passing algorithms

Gaussian Belief propagation

BP based on particle filters (see sampling)

Expectation propagation

…


