Probabilistic Graphical Models

Lecture 12 - Dynamical Models

CS/CNS/EE 155
Andreas Krause

Announcements

- Homework 3 out tonight
- Start early!!
- Project milestones due today
- Please email to TAs

Parameter learning for log-linear models

- Feature functions $\phi_{i}\left(\mathrm{C}_{\mathrm{i}}\right)$ defined over cliques
- Log linear model over undirected graph G
- Feature functions $\phi_{1}\left(C_{1}\right), \ldots, \phi_{k}\left(C_{k}\right)$
- Domains Ci $_{i}$ can overlap
- Joint distribution

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \underline{\exp \left(\sum_{i} w_{i}^{T} \phi_{i}\left(C_{i}\right)\right)}
$$

- How do we get weights w_{i} ?

Log-linear conditional random field

- Define log-linear model over outputs Y
- No assumptions about inputs X
- Feature functions $\phi_{i}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{x}\right)$ defined over cliques and inputs

$$
c_{i} \subseteq y
$$

- Joint distribution

$$
P\left(Y_{1}, \ldots, Y_{n} \mid x\right)=\frac{1}{Z\left(x_{i}\right)} \exp \left(\sum_{i} w_{i}^{T} \phi_{i}\left(C_{i}, x\right)\right)
$$

Example: CRFs in NLP

Mrs. Greene spoke today in New York. Green chairs the finance committee

- Classify into Person, Location or Other

Example: CRFs in vision

Gradient of conditional log-likelihood

- Partial derivative

$$
\frac{\partial \log P\left(\mathcal{D}_{Y} \mid w, \mathcal{D}_{X}\right)}{\partial w_{i}}=\sum_{j}[\phi_{i}\left(\mathbf{c}_{i}^{(j)}, x^{(j)}\right)+\underbrace{\sum_{\mathbf{c}_{i}} P\left(\mathbf{c}_{i} \mid w, x^{(j)}\right) \phi_{i}\left(\mathbf{c}_{i}, x^{(j)}\right)}_{\text {Req. } \ln f \text { erence }}]
$$

- Requires one inference per feature and per data point

$$
\begin{aligned}
& \text { Can be very expansive } \\
& \text { Con do "pen do" liedihood oast, Capproxsimate) }
\end{aligned}
$$

- Can optimize using conjugate gradient

Exponential Family Distributions

- Distributions for log-linear models

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left(\sum_{i} w_{i}^{T} \phi_{i}\left(C_{i}\right)\right)
$$

- More generally: Exponential family distributions

$$
P(x)=h(x) \exp \left(w^{T} \phi(x)-A(w)\right)
$$

- $h(x)$: Base measure \leftarrow Cften constant
- w: natural parameters
- $\phi(\mathrm{x})$: Sufficient statistics
- $A(w)$: log-partition function $\quad A(w)=\log z(w)$
- Hereby x can be continuous (defined over any set)

Examples

- Exp. Family:

$$
P(x)=h(x) \exp \left(w^{T} \phi(x)-A(w)\right)
$$

- Gaussian distribution
$h(x)$: Base measure w: natural parameters $\phi(\mathrm{x})$: Sufficient statistics A(w): log-partition function

$$
\begin{aligned}
& P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{\frac{2 \sigma^{2}}{}}\right) \\
& h(x)=\frac{1}{\sqrt{2 \pi}} \quad-\frac{x^{2}}{2 \sigma^{2}}+\frac{x \mu}{\sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}} \\
& \phi(x)=\left[-\frac{x^{2}}{2}, x\right] \quad A(w)=\frac{\mu^{2}}{2 \sigma^{2}}-\log \sigma \\
& w=\left[\frac{1}{\sigma^{2}}, \frac{\mu}{\sigma^{2}}\right]_{1}^{1}
\end{aligned}
$$

- Other examples: Multinomial, Poisson, Exponential, Gamma, Weibull, chi-square, Dirichlet, Geometric, ...

Moments and gradients

$$
P(x)=h(x) \exp \left(w^{T} \phi(x)-A(w)\right)
$$

- Correspondence between moments and log-partition function (just like in log-linear models)

$$
\begin{aligned}
\frac{\partial A(w)}{\partial w_{i}} & =\int p(x \mid w) \phi_{i}(x) d x=\mathbb{E}\left[\phi_{i} \mid w\right] \\
\frac{\partial^{2} A(w)}{\partial w_{i} \partial w_{j}} & =\operatorname{Cov}\left(\phi_{i}, \phi_{j} \mid w\right)
\end{aligned}
$$

- Can compute moments from derivatives, and derivatives from moments!
- MLE \Leftrightarrow moment matching

Conjugate priors in Exponential Family

$$
P(x \mid w)=h(x) \exp \left(w^{T} \phi(x)-A(w)\right)
$$

Any exponential family likelihood has a conjugate prior

$$
\begin{gathered}
P(w \mid \alpha, \beta)=\exp \left(\underline{\alpha}^{T} w-\beta A(w)-\underline{B(\alpha, \beta)}\right) \\
P(x \mid w) P(w \mid \alpha, \beta) \propto \exp \left(w^{T}(\phi(x)+\alpha)-(\beta+1) A(w)\right)
\end{gathered}
$$

Exponential family graphical models

- So far, only defined graphical models over discrete variables.
- Can define GMs over continuous distributions!
- For exponential family distributions:

$$
\begin{gathered}
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} h_{i}\left(C_{i}\right) \\
\exp A(w)=\iint \ldots \int \sum_{i}^{\prod_{i} h_{i}\left(C_{i}\right)} \exp \left(\sum_{i} w_{i}^{T} \phi_{i}^{T} \phi_{i}\left(C_{i}\right)-A(w)\right) d x_{1} \ldots d x_{n}
\end{gathered}
$$

- Can do much of what we discussed (VE, JT, parameter learning, etc.) for such exponential family models
- Important example: Gaussian Networks

Multivariate Gaussian distribution

$$
\mathcal{N}(x ; \Sigma, \mu)=\frac{1}{(2 \pi)^{n / 2} \sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 n} \\
\vdots & & & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \ldots & \sigma_{n}^{2}
\end{array}\right) \quad \mu=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right) \\
& \Sigma^{\top}=\Sigma \quad x^{\top} \Sigma x \geq 0 \quad \forall x
\end{aligned}
$$

- Joint distribution over n random variables $P\left(X_{1}, \ldots X_{n}\right)$
- $\sigma_{j k}=E\left[\left(X_{j}-\mu_{j}\right)\left(X_{k}-\mu_{k}\right)\right]=\operatorname{Cov}\left(X_{j}, X_{\varepsilon}\right)$
- X_{j} and X_{k} independent $\Leftrightarrow \sigma_{j k}=0$

Marginalization

- Suppose $\left(X_{1}, \ldots, X_{n}\right) \sim N(\mu, \Sigma)$
- What is $P\left(X_{1}\right)$??
$P\left(x_{1}\right)=\mathcal{N}\left(x_{1} ; \mu_{1}, \sigma_{l}{ }^{2}\right)$
- More generally: Let $\mathrm{A}=\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\} \subseteq\{1, \ldots, \mathrm{~N}\}$
- Write $X_{A}=\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$
- $\underline{X_{A} \sim N\left(\mu_{A}, \Sigma_{A A}\right)}$

$$
\Sigma_{A A}=\left(\begin{array}{cccc}
\sigma_{i_{1}}^{2} & \sigma_{i_{1} i_{2}} & \ldots & \sigma_{i_{1} i_{k}} \\
\vdots & & & \vdots \\
\sigma_{i_{k} i_{1}} & \sigma_{i_{k} i_{2}} & \ldots & \sigma_{i_{k}}^{2}
\end{array}\right) \quad \mu_{A}=\left(\begin{array}{c}
\mu_{i_{1}} \\
\mu_{i_{2}} \\
\vdots \\
\mu_{i_{k}}
\end{array}\right)
$$

Conditioning

- Suppose $\left(X_{1}, \ldots, X_{n}\right) \sim N(\mu, \Sigma)$
- Decompose as $\left(X_{A}, X_{B}\right)$
- What is $\mathrm{P}\left(\mathrm{X}_{\mathrm{A}} \mid \mathrm{X}_{\mathrm{B}}\right)$??

- $P\left(X_{A}=x_{A} \mid X_{B}=x_{B}\right)=N\left(x_{A} ; \mu_{A \mid B}, \Sigma_{A \mid B}\right)$ where

$$
\begin{aligned}
& \mu_{A \mid B=}=\mu_{A}+\underbrace{\Sigma_{A B} \Sigma_{B B}^{-1}}_{W}\left(x_{B}-\mu_{B}\right) \\
& \Sigma_{A \mid B}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{aligned}
$$

- Computable using linear algebra!

Does not spud on X_{B}

Conditional linear Gaussians

$$
\begin{aligned}
& \mu_{A \mid B}=\mu_{A}+\underbrace{\sum_{A B} \Sigma_{B B}^{-1}}_{\sim}\left(x_{B}-\mu_{B}\right) \\
& \Sigma_{A \mid B}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{aligned}
$$

$$
\begin{aligned}
x_{A I B} & =\mu_{A}+W x_{B}-W \mu_{B}+\varepsilon, \varepsilon^{\sim} \mathcal{N}^{\left(0, \Sigma_{A 1 B}\right)} \\
& =\frac{W x_{B}+b+\varepsilon^{6} \text { noise }}{W} \\
W & =\Sigma_{A B} \Sigma_{B B}^{-1} \\
b & =\mu_{A}-W_{\mu_{B}}
\end{aligned}
$$

Canonical Representation

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{n}\right) & =\frac{1}{(2 \pi)^{n / 2} \sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \\
& \propto \exp \left(\eta^{T} x-\frac{1}{2} x^{T} \underline{\Lambda} x\right)=\operatorname{xp}\left(\sum_{i} \eta_{i} x_{i}-\frac{1}{2} \sum_{\Gamma_{j}} x_{i} y_{j} \lambda_{i},\right)
\end{aligned}
$$

- Multivariate Gaussians in exponential family!
- Standard vs canonical form:

$$
\mu=\Lambda^{-1} \eta
$$

Gaussian Networks

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{n}\right) & \propto \exp \left(-\frac{1}{2} \sum_{i, j} \lambda_{i, j} x_{i} x_{j}+\sum_{i} \eta_{i} x_{i}\right) \\
d_{i}\left(x_{i}\right) \phi_{i, j}\left(x_{i,} y_{j}^{j}\right) & =\exp \left(\sum_{i, j} \lambda_{i, j} \phi_{i, j}\left(x_{i,} x_{j}\right)+\sum_{i} \eta_{i} \phi_{i}\left(x_{i}\right)\right) \\
\phi_{i} & \phi_{i j}\left(x_{i}, x_{j}\right)=-\frac{1}{2} x_{i} x_{j} \quad \phi_{i}\left(x_{i}^{\prime}\right)=x_{i}
\end{aligned}
$$

No edge between X_{i}, X_{j}

$$
\begin{gathered}
\Leftrightarrow \\
x_{i j}=0
\end{gathered}
$$

Zeros in precision matrix Λ indicate missing edges in log-linear model!

Inference in Gaussian Networks

- Can compute marginal distributions in $\mathrm{O}\left(\mathrm{n}^{3}\right)$!
- For large numbers n of variables, still intractable
- If Gaussian Network has low treewidth, can use variable elimination / JT inference!
- Need to be able to multiply and marginalize factors!

$$
g=\int_{x_{i}} \prod_{j} f_{j}
$$

Multiplying factors in Gaussians

$$
\begin{aligned}
& P\left(x_{A}\right)-\mathcal{N}\left(x_{\pi} ; \Lambda_{1}, y_{1}\right) \\
& |A|=b,|B|=m \\
& \Lambda_{1} \in \mathbb{R}^{k \times k} \\
& P\left(X_{B} \mid X_{A}\right)=\mathcal{A}\left(x_{B}, x_{A} ; \Lambda_{2}, \eta_{A}\right) \notin C L G \text { represectation } \\
& \Lambda_{2} \in \mathbb{R}^{m \times m} \\
& P\left(X_{A}, X_{B}\right)=P\left(X_{A}\right) P\left(X_{B} \mid X_{A}\right) \\
& \begin{array}{l}
\alpha \exp \left(x_{A}^{\top} \Lambda_{1} x_{A}+\eta_{1}^{\top} x_{A}\right) \exp \left(\left(x_{A 1} x_{B}\right)^{\top} \Lambda_{2}\left(x_{\alpha \alpha_{A}}\right)+\eta_{2}^{\top}\right) \\
\left(x_{A}, x_{B}\right)
\end{array} \\
& =\mu\left(x_{A_{1} x_{B}} ; \Lambda_{1} \eta\right) \\
& \begin{array}{l}
\left.\Lambda=\Lambda_{1}+\Lambda_{2}=\binom{\Lambda_{1}}{0}+\left(\Lambda_{2}\right), \eta_{2}\right)
\end{array} \\
& \eta=\eta_{1}+\eta_{2}
\end{aligned}
$$

Conditioning in canonical form

- Joint distribution $\left(\mathrm{X}_{\mathrm{A}}, \mathrm{X}_{\mathrm{B}}\right) \sim \mathrm{N}\left(\eta_{A B}, \Lambda_{A B}\right)$
- Conditioning: $\mathrm{P}\left(\mathrm{X}_{\mathrm{A}} \mid \mathrm{X}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}}\right)=\mathrm{N}\left(\mathrm{X}_{\mathrm{A}} ; \eta_{A \mid B=x_{B}}, \Lambda_{\mathrm{A} \mid \mathrm{B}=\mathrm{x}_{\mathrm{B}}}\right)$

$$
\begin{aligned}
& \eta_{A \mid B=x_{B}}=\eta_{A}-\Lambda_{A B} x_{B} \\
& \underline{\Lambda_{A \mid B=x_{B}}}=\underline{\Lambda_{A A}}
\end{aligned}
$$

Marginalizing in canonical form

- Recall conversion formulas
- $\mu=\Lambda^{-1} \eta$
- $\Sigma=\Lambda^{-1}$
- Marginal distribution

$$
\begin{aligned}
\eta_{A}^{m} & =\eta_{A}-\Lambda_{A B} \Lambda_{B B}^{-1} \eta_{B} \\
\Lambda_{A A}^{m} & =\Lambda_{A A}-\Lambda_{A B} \Lambda_{B B}^{-1} \Lambda_{B A}
\end{aligned}
$$

Standard vs. canonical form

Standard form

Marginalization

$$
\begin{gathered}
\underline{\mu_{A}^{m}=\mu_{A}} \\
\Sigma_{A A}^{m}=\Sigma_{A A}
\end{gathered}
$$

Conditioning

$$
\begin{aligned}
& \mu_{A \mid B=x_{B}}=\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\mu_{B}\right) \\
& \Sigma_{A \mid B=x_{B}}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{aligned}
$$

Canonical form

$$
\begin{gathered}
\eta_{A}^{m}=\eta_{A}-\Lambda_{A B} \Lambda_{B B}^{-1} \eta_{B} \\
\Lambda_{A A}^{m}=\Lambda_{A A}-\Lambda_{A B} \Lambda_{B B}^{-1} \Lambda_{B A} \\
\eta_{A \mid B=x_{B}}=\eta_{A}-\Lambda_{A B} x_{B} \\
\Lambda_{A \mid B=x_{B}}=\Lambda_{A A}
\end{gathered}
$$

-In standard form, marginalization is easy
■In canonical form, conditioning is easy!

Variable elimination

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =P\left(x_{6}\right) P\left(x _ { 2 } | x _ { 1 } | \ldots P \left(X_{1}\left(x_{n-1}\right)\right.\right. \\
\left.\left.(x) \rightarrow x_{2}\right) \rightarrow\left(x_{3}\right) \rightarrow x_{a}\right) & =N(\cdots, \Lambda, \eta)
\end{aligned}
$$

block diagond

- In Gaussian Markov Networks, Variable elimination = Gaussian elimination (fast for low bandwidth = low treewidth matrices)

Dynamical models

HMMs / Kalman Filters

- Most famous Graphical models:
- Naïve Bayes model

- Hidden Markov model
- Kalman Filter
- Hidden Markov models
- Speech recognition
- Sequence analysis in comp. bio
- Kalman Filters control
- Cruise control in cars
- GPS navigation devices
- Tracking missiles..
- Very simple models but very powerful!!

HMMs / Kalman Filters

- X_{1}, \ldots, X_{T} : Unobserved (hidden) variables
- Y_{1}, \ldots, Y_{T} : Observations
- HMMs: X_{i} Multinomial, Y_{i} arbitrary
- Kalman Filters: X_{i}, Y_{i} Gaussian distributions
- Non-linear KF: X_{i} Gaussian, Y_{i} arbitrary

HMMs for speech recognition

"He ate the cookies on the couch"

- Infer spoken words from audio signals

Hidden Markov Models

- Inference:
- In principle, can use VE, JT etc.
- New variables X_{t}, Y_{t} at each time step \rightarrow need to rerun

- Bayesian Filtering:
- Suppose we already have computed $P\left(X_{t} \mid y_{1, \ldots, t}\right)$
- Want to efficiently compute $P\left(X_{t+1} \mid y_{1, \ldots, t+1}\right)$

Bayesian filtering

- Start with $\mathrm{P}\left(\mathrm{X}_{1}\right)$
- At time t
- Assume we have $P\left(\underline{X_{t} \mid y_{1 . . t-1}}\right)$
- Condition: $P\left(X_{t} \mid y_{1 . . . t}\right)$

$$
\begin{aligned}
& P\left(X_{t} \mid Y_{1 \ldots t}\right) \propto P\left(X_{t} \mid Y_{1, t-1}\right) \underbrace{P\left(Y_{t}\left|X_{*}\right| Y_{1, t-1}\right)}_{\text {cond.ind. } P\left(Y_{t} \mid X_{t}\right)}
\end{aligned}
$$

- Prediction: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1}, \mathrm{X}_{\mathrm{t}} \mid \mathrm{y}_{1 \ldots \mathrm{t}}\right)$

$$
P\left(X_{t+1}, X_{t} \mid y_{1, t}\right)=P\left(X_{t} \mid y_{1, t}\right) \cdot \underbrace{P\left(X_{t+1} \mid X_{t}, y_{1, t}\right)}_{=P\left(X_{t+1} \mid X_{t}\right)}
$$

- Marginalization: $P\left(X_{t+1} \mid y_{1 . . . t}\right)$

$$
P\left(x_{t+1} \mid y_{1} \ldots t\right)=\sum_{x_{\pi}} P\left(x_{t+1,} x_{t} \mid y_{1}, . t\right)
$$

Parameter learning in HMMs

- Assume we have labels for hidden variables
- Assume stationarity
- $P\left(X_{t+1} \mid X_{t}\right)$ is same over all time steps
- $P\left(Y_{t} \mid X_{t}\right)$ is same over all time steps
- Violates parameter independence (\rightarrow parameter "sharing")
- Example: compute parameters for $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1}=\mathrm{x}_{\uparrow} \mid \mathrm{X}_{\mathrm{t}}=\mathrm{x}^{\prime}\right)$

$$
\begin{gathered}
\log P\left(x_{1} \ldots x_{T}, y_{1}, \ldots y_{T} \mid \theta\right)=\log P\left(x_{1}\right) \prod_{t-2}^{T} P\left(x_{t}\left|x_{x_{1}+1}^{t}\right| \prod_{N-1}^{T} P\left(y_{t} \mid x_{t}^{\theta_{t}}\right)\right. \\
=\log P\left(x_{1} \mid \theta_{3}\right)+\sum_{t} \log P\left(x_{t} \mid x_{t-1}, \theta_{1}\right)+\sum_{x} \log P\left(y_{t} \mid x_{t}, \theta_{2}\right) \\
\theta_{x_{t}=x \mid x_{t-1}}=x^{\prime}=\frac{\operatorname{count}\left(x_{1}^{\prime}, x\right)}{T-1}
\end{gathered}
$$

- What if we don't have labels for hidden vars?
\rightarrow Use EM (later this course)

Kalman Filters (Gaussian HMMs)

- $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{T}}$: Location of object being tracked
- Y_{1}, \ldots, Y_{T} : Observations
- $P\left(X_{1}\right)$: Prior belief about location at time 1
- $P\left(X_{t+1} \mid X_{t}\right)$: "Motion model"
- How do I expect my target to move in the environment?
- Represented as CLG: $\mathrm{X}_{\mathrm{t}+1}=\mathrm{A} \mathrm{X}_{\mathrm{t}}+\mathrm{N}\left(0, \Sigma_{M}\right)$
- $P\left(Y_{t} \mid X_{t}\right)$: "Sensor model"
- What do I observe if target is at location X_{t} ?
- Represented as CLG: $\mathrm{Y}_{\mathrm{t}}=\mathrm{HX} \mathrm{X}_{\mathrm{t}}+\mathrm{N}\left(0, \Sigma_{O}\right)$

Understanding Motion model

Understanding sensor model

$$
x_{t}=\binom{L_{t}}{V_{t}}
$$

only obs. location

Bayesian Filtering for KFs

- Can use Gaussian elimination to perform inference in "unrolled" model

- Start with prior belief $\mathrm{P}\left(\mathrm{X}_{1}\right)$
- At every timestep have belief $P\left(X_{t} \mid \mathrm{Y}_{1: \mathrm{t}-1}\right) \quad$ "sensor mode"
- Condition on observation: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{Y}_{1 . t}\right) \nprec$ Multiply likalihard
- Predict (multiply motion model): $P\left(X_{t+1}, X_{t} \mid y_{1: t}\right)=\begin{gathered}\text { Multiply } \\ \text { motion mad }\end{gathered}$
- "Roll-up" (marginalize prev. time): $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{y}_{1: t}\right)$

Implementation

- Current belief: $\mathrm{P}\left(\mathrm{x}_{\mathrm{t}} \mid \mathrm{y}_{1: \mathrm{t}-1}\right)=\mathrm{N}\left(\mathrm{x}_{\mathrm{t}} ; \eta_{\mathrm{x}_{\mathrm{t}}}, \Lambda_{\mathrm{x}_{\mathrm{t}}}\right)$
- Multiply sensor and motion model

Motion motel
$P\left(X_{A+1} \mid X_{K}\right) \in$ Represented as CLG, canonical pans

$$
\begin{aligned}
P\left(X_{1+11} x_{t} \mid y_{1, \ldots t}\right) & =P\left(X_{t} \mid y_{1: A-1}\right) P\left(X_{t+1} \mid X_{t}\right) \\
& =N\left(\cdot ; \eta x_{t}+\eta_{M} 1 \Lambda_{X_{t}}+\Lambda_{M}\right)
\end{aligned}
$$

- Marginalize $P\left(X_{t+1} \mid y_{1, \ldots A}\right)=\mathcal{N}\left(\because \eta_{A}^{m}, \Lambda_{A A}^{m}\right)$

$$
\begin{array}{cl}
\eta_{A}^{m}=\eta_{A}-\Lambda_{A B} \Lambda_{B B}^{-1} \eta_{B} & A=\chi_{t+1} \mid y_{1 . \ldots} \\
\Lambda_{A A}^{m}=\Lambda_{A A}-\Lambda_{A B} \Lambda_{B B}^{-1} \Lambda_{B A} & B=\chi_{\tau} \mid y_{1} \ldots y_{\tau}
\end{array}
$$

What if observations not "linear"?

- Linear observations:
- $Y_{t}=H X_{t}$ + noise
- Nonlinear observations:
"Motion defector": $Y_{t}=1$ if $X_{t} \in R$
$=0$ otherwise

Incorporating Non-gaussian observations

- Nonlinear observation $\rightarrow P\left(Y_{t} \mid X_{t}\right)$ not Gaussian
- First approach: Approximate $P\left(Y_{t} \mid X_{t}\right)$ as CLG
- Linearize $P\left(Y_{t} \mid X_{t}\right)$ around current estimate $E\left[X_{t} \mid y_{1 . . t-1}\right]$
- Known as Extended Kalman Filter (EKF)
- Can perform poorly if $P\left(Y_{t} \mid X_{t}\right)$ highly nonlinear
- Second approach: Approximate $\mathrm{P}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}\right)$ as Gaussian
- Takes correlation in X_{t} into account
- After obtaining approximation, condition on $Y_{t}=y_{t}$ (now a "linear" observation)

Finding Gaussian approximations

- Need to find Gaussian approximation of $P\left(X_{t}, Y_{t}\right)$
- How?
- Gaussian in Exponential Family \rightarrow Moment matching!!

$$
\begin{aligned}
& \text { - } \mathrm{E}\left[Y_{t}\right]=\int y P\left(y_{t}\right) d y_{t}=\int y \underbrace{P\left(y_{t} \mid x_{t}\right.}_{\text {nonlinear }} \underbrace{P\left(x_{\pi}\right)}_{\text {Gausion }} d x_{t} d y_{t} \\
& \text { - } E\left[Y_{t}^{2}\right]=\int y^{2} P\left(y_{t}\left(x_{t}\right) P\left(x_{t}\right) d x_{t} d g_{t}\right. \\
& \text { - } E\left[X_{t} Y_{t}\right]=\int x y P\left(y_{t} \mid x_{t}\right) P\left(x_{t}\right) d x_{t} \operatorname{Ag}_{\pi}
\end{aligned}
$$

Linearization by integration

- Need to integrate product of Gaussian with arbitrary function
- Can do that by numerical integration
- Approximate integral as weighted sum of evaluation points

$$
\begin{aligned}
& \int f(x, y) \rho(x) d x d y \approx \sum_{i} w_{i} f\left(x^{(i)}, y^{(i)}\right) \\
& \uparrow_{\text {How should we choose? }}
\end{aligned}
$$

- Gaussian quadrature defines locations and weights of points
- For 1 dim: Exact for polynomials of degree D if choosing 2D points using Gaussian quadrature
- For higher dimensions: Need exponentially many points to achieve exact evaluation for polynomials
- Application of this is known as "Unscented" Kalman Filter (UKF)

Factored dynamical models

- So far: HMMs and Kalman filters

- What if we have more than one variable at each time step?
- E.g., temperature at different locations, or road conditions in a road network?
\rightarrow Spatio-temporal models

Dynamic Bayesian Networks

- At every timestep have a Bayesian Network

- Variables at each time step t called a "slice" \mathbf{S}_{t}
- "Temporal" edges connecting S_{t+1} with S_{t}

Tasks

- Read Koller \& Friedman Chapters 6.2.3, 15.1

