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Announcements
Homework 3 out tonight

Start early!!

Project milestones due today

Please email to TAs
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Parameter learning for log-linear models

Feature functions φi(Ci) defined over cliques

Log linear model over undirected graph G

Feature functions φ1(C1),…,φk(Ck)

Domains Ci can overlap

Joint distribution

How do we get weights wi?
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Log-linear conditional random field
Define log-linear model over outputs Y

No assumptions about inputs X

Feature functions φi(Ci,x) defined over cliques and inputs

Joint distribution
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Example: CRFs in NLP

Classify into Person, Location or Other

Mrs. Greene spoke today in New York. Green chairs the finance committee

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12
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Example: CRFs in vision
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Gradient of conditional log-likelihood

Partial derivative

Requires one inference per

Can optimize using conjugate gradient
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Exponential Family Distributions
Distributions for log-linear models

More generally: Exponential family distributions

h(x): Base measure

w: natural parameters

φ(x): Sufficient statistics

A(w): log-partition function

Hereby x can be continuous (defined over any set)
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Examples
Exp. Family:

Gaussian distribution

Other examples: Multinomial, Poisson, Exponential, 

Gamma, Weibull, chi-square, Dirichlet, Geometric, …

h(x): Base measure

w: natural parameters

φ(x): Sufficient statistics

A(w): log-partition function
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Moments and gradients

Correspondence between moments and log-partition 

function (just like in log-linear models)

Can compute moments from derivatives, and 

derivatives from moments!

MLE � moment matching
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Conjugate priors in Exponential Family

Any exponential family likelihood has a conjugate prior
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Exponential family graphical models

So far, only defined graphical models over 

discrete variables.

Can define GMs over continuous distributions! 

For exponential family distributions:

Can do much of what we discussed (VE, JT, parameter 

learning, etc.) for such exponential family models

Important example: Gaussian Networks
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Multivariate Gaussian distribution

Joint distribution over n random variables P(X1,…Xn)

σjk = E[ (Xj – µj) (Xk - µk) ]

Xj and Xk independent � σjk=0
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Marginalization
Suppose  (X1,…,Xn) ~ N( µ, Σ)

What is P(X1)??

More generally: Let A={i1,…,ik} ⊆ {1,…,N}

Write XA = (Xi1
,…,Xik

)

XA ~ N( µA, ΣAA)
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Conditioning
Suppose (X1,…,Xn) ~ N( µ, Σ)

Decompose as (XA,XB)

What is P(XA | XB)??

P(XA = xA| XB = xB) = N(xA; µA|B, ΣA|B) where

Computable using linear algebra!
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Conditional linear Gaussians



17

Canonical Representation

Multivariate Gaussians in exponential family!

Standard vs canonical form:

µ = Λ-1 η

Σ = Λ-1
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Gaussian Networks

Zeros in precision matrix Λ indicate missing edges

in log-linear model!
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Inference in Gaussian Networks
Can compute marginal distributions in O(n3)!

For large numbers n of variables, still intractable

If Gaussian Network has low treewidth, can use 

variable elimination / JT inference!

Need to be able to multiply and marginalize factors!
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Multiplying factors in Gaussians
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Conditioning in canonical form
Joint distribution (XA, XB) ~ N(ηAB,ΛAB)

Conditioning: P(XA | XB = xB) = N(xA; ηA|B=xB
, ΛA|B=xB

)
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Marginalizing in canonical form
Recall conversion formulas

µ = Λ-1 η

Σ = Λ-1

Marginal distribution
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Standard vs. canonical form
Standard form Canonical form

Marginalization

Conditioning

�In standard form, marginalization is easy

�In canonical form, conditioning is easy! 
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Variable elimination 

In Gaussian Markov Networks, Variable elimination = 

Gaussian elimination (fast for low bandwidth = low 

treewidth matrices)
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Dynamical models
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HMMs / Kalman Filters
Most famous Graphical models:

Naïve Bayes model

Hidden Markov model

Kalman Filter

Hidden Markov models

Speech recognition

Sequence analysis in comp. bio

Kalman Filters control

Cruise control in cars

GPS navigation devices

Tracking missiles..

Very simple models but very powerful!!
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HMMs / Kalman Filters

X1,…,XT: Unobserved (hidden) variables

Y1,…,YT: Observations

HMMs: Xi Multinomial, Yi arbitrary

Kalman Filters: Xi, Yi Gaussian distributions

Non-linear KF: Xi Gaussian, Yi arbitrary

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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HMMs for speech recognition

Infer spoken words from audio signals

28

Y1 Y2 Y3 Y4 Y5 Y6
Phoneme

X1 X2 X3 X4 X5 X6
Words

“He ate the cookies on the couch”
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Hidden Markov Models
Inference:

In principle, can use VE, JT etc.

New variables Xt, Yt at

each time step � need to rerun

Bayesian Filtering:

Suppose we already have computed P(Xt | y1,…,t)

Want to efficiently compute P(Xt+1 | y1,…,t+1)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Bayesian filtering
Start with P(X1)

At time t

Assume we have P(Xt | y1…t-1)

Condition: P(Xt | y1…t)

Prediction: P(Xt+1, Xt | y1…t)

Marginalization: P(Xt+1 | y1…t)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Parameter learning in HMMs
Assume we have labels for hidden variables

Assume stationarity

P(Xt+1 | Xt) is same over all time steps

P(Yt | Xt) is same over all time steps

Violates parameter independence (� parameter “sharing”)

Example: compute parameters for P(Xt+1=x | Xt=x’)

What if we don’t have labels for hidden vars?

� Use EM (later this course)



32

Kalman Filters (Gaussian HMMs)

X1,…,XT: Location of object being tracked

Y1,…,YT: Observations

P(X1): Prior belief about location at time 1

P(Xt+1|Xt): “Motion model”

How do I expect my target to move in the environment?

Represented as CLG:  Xt+1 = A Xt + N(0, ΣM)

P(Yt | Xt): “Sensor model”

What do I observe if target is at location Xt?

Represented as CLG: Yt = H Xt + N(0, ΣO)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Understanding Motion model
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Understanding sensor model
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Bayesian Filtering for KFs
Can use Gaussian elimination to perform inference in 

“unrolled” model 

Start with prior belief P(X1)

At every timestep have belief P(Xt | y1:t-1)

Condition on observation: P(Xt | y1:t)

Predict (multiply motion model): P(Xt+1,Xt | y1:t)

“Roll-up” (marginalize prev. time): P(Xt+1 | y1:t)

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Implementation
Current belief: P(xt | y1:t-1) = N(xt; ηXt

, ΛXt
)

Multiply sensor and motion model

Marginalize
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What if observations not “linear”?

Linear observations:

Yt = H Xt + noise

Nonlinear observations:
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Incorporating Non-gaussian observations

Nonlinear observation � P(Yt | Xt) not Gaussian

First approach: Approximate P(Yt | Xt) as CLG

Linearize P(Yt | Xt) around current estimate E[Xt | y1..t-1]

Known as Extended Kalman Filter (EKF)

Can perform poorly if P(Yt | Xt) highly nonlinear

Second approach: Approximate P(Yt, Xt) as Gaussian

Takes correlation in Xt into account

After obtaining approximation, condition on Yt=yt

(now a “linear” observation)
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Finding Gaussian approximations

Need to find Gaussian approximation of P(Xt,Yt)

How?

Gaussians in Exponential Family � Moment matching!!

E[Yt] = 

E[Yt
2] = 

E[Xt Yt] = 
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Linearization by integration
Need to integrate product of Gaussian with arbitrary 

function

Can do that by numerical integration

Approximate integral as weighted sum of evaluation points

Gaussian quadrature defines locations and weights of points

For 1 dim: Exact for polynomials of degree D if choosing 2D 

points using Gaussian quadrature

For higher dimensions: Need exponentially many points to 

achieve exact evaluation for polynomials

Application of this is known as “Unscented” Kalman

Filter (UKF)



41

Factored dynamical models
So far: HMMs and Kalman filters

What if we have more than one variable at each time 

step?

E.g., temperature at different locations, or road conditions 

in a road network?

� Spatio-temporal models

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6
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Dynamic Bayesian Networks
At every timestep have a Bayesian Network

Variables at each time step t called a “slice” St

“Temporal” edges connecting St+1 with St

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3
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Tasks
Read Koller & Friedman Chapters 6.2.3, 15.1


