Probabilistic Graphical Models

Lecture 12 – Dynamical Models

CS/CNS/EE 155

Andreas Krause

Announcements

- Homework 3 out tonight
 - Start early!!
- Project milestones due today
 - Please email to TAs

Parameter learning for log-linear models

- ullet Feature functions $\phi_i(C_i)$ defined over cliques
- Log linear model over undirected graph G
 - Feature functions $\phi_1(C_1),...,\phi_k(C_k)$
 - Domains C_i can overlap
- Joint distribution

$$P(X_1, \dots, X_n) = \frac{1}{Z} \exp\left(\sum_i w_i^T \phi_i(C_i)\right)$$

How do we get weights w_i?

Log-linear conditional random field

- Define log-linear model over outputs Y
 - No assumptions about inputs X
- Feature functions $\phi_i(C_i,x)$ defined over cliques and inputs $C_i \subseteq \mathcal{V}$
- Joint distribution

$$P(Y_1, \dots, Y_n \mid x) = \frac{1}{Z(x_i)} \exp\left(\sum_i w_i^T \phi_i(C_i, x)\right)$$

Example: CRFs in NLP

Mrs. Greene spoke today in New York. Green chairs the finance committee

Classify into Person, Location or Other

Example: CRFs in vision

Gradient of conditional log-likelihood

Partial derivative

$$\frac{\partial \log P(\mathcal{D}_Y \mid w, \mathcal{D}_X)}{\partial w_i} = \sum_{j} \left[\phi_i(\mathbf{c}_i^{(j)}, x^{(j)}) + \sum_{\mathbf{c}_i} P(\mathbf{c}_i \mid w, x^{(j)}) \phi_i(\mathbf{c}_i, x^{(j)}) \right]$$
Req. In fevence

Requires one inference per feature and per data point

Can optimize using conjugate gradient

Exponential Family Distributions

Distributions for log-linear models

$$P(X_1, \dots, X_n) = \frac{1}{Z} \exp\left(\sum_i w_i^T \phi_i(C_i)\right)$$

More generally: Exponential family distributions

$$P(x) = h(x) \exp(w^T \phi(x) - A(w))$$

- h(x): Base measure Offen constant
- w: natural parameters
- $\phi(x)$: Sufficient statistics
- A(w): log-partition function $A(\omega) = A(\omega) = A(\omega)$ Hereby x can be continuous (defined over any set)

Examples

Exp. Family:

$$P(x) = h(x) \exp(w^{T} \phi(x) - A(w))$$

Gaussian distribution

h(x): Base measure w: natural parameters ϕ (x): Sufficient statistics

A(w): log-partition function

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$h(x) = \frac{1}{\sqrt{2\pi}} - \frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2}$$

$$\phi(x) = \left[-\frac{x^2}{2}, x\right], \quad A(w) = \frac{\mu^2}{2\sigma^2} - \log \sigma$$

$$w = \left[-\frac{1}{\sigma^2}, \frac{m}{\sigma^2}\right]$$

Other examples: Multinomial, Poisson, Exponential,
 Gamma, Weibull, chi-square, Dirichlet, Geometric, ...

Moments and gradients

$$P(x) = h(x) \exp(w^{T} \phi(x) - A(w))$$

 Correspondence between moments and log-partition function (just like in log-linear models)

$$\frac{\partial A(w)}{\partial w_i} = \int p(x \mid w) \phi_i(x) dx = \mathbb{E}[\phi_i \mid w]$$

$$\frac{\partial^2 A(w)}{\partial w_i \partial w_j} = Cov(\phi_i, \phi_j \mid w)$$

- Can compute moments from derivatives, and derivatives from moments!
- MLE moment matching

Conjugate priors in Exponential Family

$$P(x \mid w) = h(x) \exp(w^T \phi(x) - A(w))$$

Any exponential family likelihood has a conjugate prior

$$P(w|\alpha,\beta) = \exp(\underline{\alpha}^T w - \beta A(w) - \underline{B(\alpha,\beta)})$$

Exponential family graphical models

- So far, only defined graphical models over discrete variables.
- Can define GMs over continuous distributions!
- For exponential family distributions:

$$p(X_1, \dots, X_n) = \prod_i h_i(C_i) \exp\left(\sum_i w_i^T \phi_i(C_i) - A(w)\right)$$
$$\exp A(w) = \int \int \dots \int \prod_i h_i(C_i) \exp\left(\sum_i w_i^T \phi_i(C_i) - A(w)\right) dx_1 \dots dx_n$$

- Can do much of what we discussed (VE, JT, parameter learning, etc.) for such exponential family models
- Important example: Gaussian Networks

Multivariate Gaussian distribution

$$\mathcal{N}(x; \Sigma, \mu) = \frac{1}{(2\pi)^{n/2} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \vdots & & & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}$$
Posidet. $\chi^T \Sigma \times 20 \ \forall \times$

- Joint distribution over n random variables P(X₁,...X_n)
- $\sigma_{jk} = E[(X_j \mu_j)(X_k \mu_k)] = Cov(X_j/X_k)$ X_j and X_k independent $\Leftrightarrow \sigma_{jk} = 0$

Marginalization

• Suppose
$$(X_1,...,X_n) \sim N(\mu, \Sigma)$$

• What is $P(X_1)$??

$$\sum = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \vdots & & & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{bmatrix} \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

$$P(X_1) = N(X_1, G_1^2)$$

- More generally: Let $A=\{i_1,...,i_k\}\subseteq\{1,...,N\}$
- Write $X_A = (X_{i_1}, ..., X_{i_k})$
- ullet X $_{\mathsf{A}}$ $^{\sim}$ N(μ_{A} , Σ_{AA})

$$\Sigma_{AA} = \begin{pmatrix} \sigma_{i_1}^2 & \sigma_{i_1 i_2} & \dots & \sigma_{i_1 i_k} \\ \vdots & & & \vdots \\ \sigma_{i_k i_1} & \sigma_{i_k i_2} & \dots & \sigma_{i_k}^2 \end{pmatrix} \qquad \mu_A = \begin{pmatrix} \mu_{i_1} \\ \mu_{i_2} \\ \vdots \\ \mu_{i_k} \end{pmatrix}$$

Conditioning

- Suppose $(X_1,...,X_n) \sim N(\mu, \Sigma)$
- Decompose as (X_A,X_B)
- What is $P(X_A \mid X_B)$??

• $P(X_A = X_A | X_B = X_B) = N(X_A; \mu_{A|B}, \Sigma_{A|B})$ where

$$\mu_{A|B} = \underline{\mu_A} + \underline{\Sigma_{AB}} \underline{\Sigma_{BB}}^{-1} (x_B - \mu_B)$$

$$\Sigma_{A|B} = \underline{\Sigma_{AA}} - \underline{\Sigma_{AB}} \underline{\Sigma_{BB}}^{-1} \underline{\Sigma_{BA}}$$

Computable using linear algebra!

Does not legal on XB

Conditional linear Gaussians

$$\mu_{A|B} = \mu_A + \sum_{AB} \sum_{BB}^{-1} (x_B - \mu_B)$$

$$\sum_{A|B} = \sum_{AA} - \sum_{AB} \sum_{BB}^{-1} \sum_{BA} \sum_{BA} \sum_{BB} \sum_{B$$

$$X_{AIB} = M_A + W_{XB} - W_{MB} + \varepsilon_1 \underbrace{\varepsilon \sim M_0, \Sigma_{AIB}}$$

$$= W_{XB} + b + \varepsilon \qquad \text{noise}$$

$$W = \Sigma_{AB} \Sigma_{BB}^{-1}$$

$$b = M_A - W_{MB}$$

Canonical Representation

$$p(X_1, \dots, X_n) = \frac{1}{(2\pi)^{n/2} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

$$\propto \exp(\eta^T x - \frac{1}{2} x^T \Lambda x) = \Re\left(\sum_{\vec{\lambda}} \gamma_{\vec{\lambda}} \chi_{\vec{\lambda}} - \frac{1}{2} \sum_{\vec{\lambda}} \chi_{\vec{\lambda}} \chi_{\vec{\lambda}} \chi_{\vec{\lambda}} \right)$$

- Multivariate Gaussians in exponential family!
- Standard vs canonical form:

$$\mu = \Lambda^{\text{-1}} \, \eta$$

$$\Sigma = \Lambda^{\text{-1}}$$

Gaussian Networks

$$p(X_{1},...,X_{n}) \propto \exp\left(-\frac{1}{2}\sum_{i,j}\lambda_{i,j}x_{i}x_{j} + \sum_{i}\eta_{i}x_{i}\right)$$

$$\phi_{i,j}(x_{i},y_{i}) \qquad = \mathcal{L}_{\rho}\left(\sum_{x_{i,j}}\lambda_{i,j},\phi_{i,j}(x_{i},y_{i}) + \sum_{i}\eta_{i}x_{i}\right)$$

$$\phi_{i,j}(x_{i},x_{i}) = -\frac{1}{2}x_{i}x_{j} \quad \phi_{i}(x_{i}) = x_{i}$$

Zeros in precision matrix \varLambda indicate missing edges in log-linear model!

Inference in Gaussian Networks

- Can compute marginal distributions in O(n³)!
- For large numbers n of variables, still intractable
- If Gaussian Network has low treewidth, can use variable elimination / JT inference!
- Need to be able to multiply and marginalize factors!

$$g = \int_{x_i} \prod_j f_j$$

Multiplying factors in Gaussians

$$P(X_{A}) = \mathcal{N}(x_{R}; \Lambda_{1}, \Upsilon_{1}) \qquad \underset{A_{1} \in \mathbb{R}}{|A| = k \cdot |B| = m}$$

$$P(X_{B} | X_{A}) \neq \mathcal{N}(x_{B}; X_{A}; \Lambda_{2}, \Upsilon_{2}) \neq \underset{A_{2} \in \mathbb{R}}{|C|} \qquad \underset{M \neq m}{|C|} \qquad \underset{M$$

Conditioning in canonical form

• Joint distribution (X_A , X_B) ~ $N(\eta_{AB}$, Λ_{AB})

• Conditioning: $P(X_A \mid X_B = X_B) = N(x_A; \eta_{A|B=x_B}, \Lambda_{A|B=x_B})$

$$\eta_{A|B=x_B} = \eta_A - \Lambda_{AB} x_B$$

$$\Lambda_{A|B=x_B} = \Lambda_{AA}$$

Marginalizing in canonical form

- Recall conversion formulas
 - \bullet μ = Λ ⁻¹ η
 - $\Sigma = \Lambda^{-1}$
- Marginal distribution

$$\eta_A^m = \eta_A - \Lambda_{AB} \Lambda_{BB}^{-1} \eta_B$$

$$\Lambda_{AA}^{m} = \Lambda_{AA} - \Lambda_{AB}\Lambda_{BB}^{-1}\Lambda_{BA}$$

Standard vs. canonical form

Standard form

Marginalization

$$\mu_A^m = \mu_A$$

$$\Sigma_{AA}^m = \Sigma_{AA}$$

Conditioning

$$\mu_{A|B=x_B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B)$$

$$\Sigma_{A|B=x_B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$$

Canonical form

$$\eta_A^m = \eta_A - \Lambda_{AB} \Lambda_{BB}^{-1} \eta_B$$

$$\Lambda_{AA}^{m} = \Lambda_{AA} - \Lambda_{AB}\Lambda_{BB}^{-1}\Lambda_{BA}$$

$$\eta_{A|B=x_B} = \eta_A - \Lambda_{AB} x_B$$

$$\Lambda_{A|B=x_B} = \Lambda_{AA}$$

- In standard form, marginalization is easy
- In canonical form, conditioning is easy!

Variable elimination

$$P(X_{1},...,X_{m}) = P(X_{i}) P(X_{i}|X_{i}) \cdots P(X_{m}|X_{m-1})$$

$$R \rightarrow R_{0} \rightarrow R_{0} \rightarrow R_{0} \rightarrow R_{0} \rightarrow R_{0}$$

$$= M(\cdot; \Lambda, \gamma)$$

$$hlock diagonal$$

$$\Lambda = \begin{pmatrix} A_{1} & A_{2} & A_{3} & A_{4} &$$

 In Gaussian Markov Networks, Variable elimination = Gaussian elimination (fast for low bandwidth = low treewidth matrices)

Dynamical models

HMMs / Kalman Filters

- Most famous Graphical models:
 - Naïve Bayes model
 - Hidden Markov model
 - Kalman Filter

- Speech recognition
- Sequence analysis in comp. bio
- Kalman Filters control
 - Cruise control in cars
 - GPS navigation devices
 - Tracking missiles...
- Very simple models but very powerful!!

HMMs / Kalman Filters

- \bullet X₁,...,X_T: Unobserved (hidden) variables
- \bullet $Y_1,...,Y_T$: Observations
- HMMs: X_i Multinomial, Y_i arbitrary
- Kalman Filters: X_i, Y_i Gaussian distributions
 - Non-linear KF: X_i Gaussian, Y_i arbitrary

HMMs for speech recognition

Infer spoken words from audio signals

Hidden Markov Models

Inference:

- In principle, can use VE, JT etc.
- New variables X_t , Y_t at each time step \rightarrow need to rerun

Bayesian Filtering:

- Suppose we already have computed $P(X_t \mid y_{1,...,t})$
- Want to efficiently compute $P(X_{t+1} | y_{1,...,t+1})$

Bayesian filtering

- Start with P(X₁)
- At time t
 - Assume we have $P(X_t \mid y_{1...t-1})$
 - Condition: P(X_t | y_{1...t})

Prediction: P(X_{t+1}, X_t | y_{1...t})

• Marginalization: $P(X_{t+1} | y_{1...t})$

$$P(X_{t+1}|y_{i-t}) = \sum_{x_{k}} P(X_{t+1}, x_{k}|y_{i-t})$$

Parameter learning in HMMs

- Assume we have labels for hidden variables
- Assume stationarity
 - $P(X_{t+1} \mid X_t)$ is same over all time steps
 - $P(Y_t \mid X_t)$ is same over all time steps
 - Violates parameter independence (parameter "sharing")
- Example: compute parameters for $P(X_{t+1}=x \mid X_t=x')$

$$log P(x_1...x_{1},y_1...y_{1}|\theta) = log P(X_1) \prod_{k=2} P(X_{k}|X_{k}-1) \prod_{k=1} P(y_{k}|X_{k})$$

$$= log P(X_1|\theta_3) + \sum_{k} log P(X_{k}|X_{k-1},\theta_1) + \sum_{k} log P(y_{k}|X_{k},\theta_2)$$

$$O_{X_{k}=x}|X_{k-1}=x' = \frac{count(x',x)}{1-1}$$

- What if we don't have labels for hidden vars?
 - → Use EM (later this course)

Kalman Filters (Gaussian HMMs)

- X₁,...,X_T: Location of object being tracked
- \bullet $Y_1,...,Y_T$: Observations
- P(X₁): Prior belief about location at time 1
- $P(X_{t+1}|X_t)$: "Motion model"
 - How do I expect my target to move in the environment?
 - Represented as CLG: $X_{t+1} = A X_t + N(0, \Sigma_M)$
- P(Y_t | X_t): "Sensor model"
 - What do I observe if target is at location X_t?
 - Represented as CLG: $Y_t = H X_t + N(0, \Sigma_O)$

Understanding Motion model

Understanding sensor model

Only obs. location

$$X_{k} = \begin{pmatrix} L_{k} \\ V_{t} \end{pmatrix} \qquad Y_{k} = \begin{pmatrix} I_{1} O \end{pmatrix} X_{k} + \text{noise}$$

$$P(X_{k}|y_{1}-y_{k-1})$$

Posterior $P(X_{k}|y_{1}...y_{k})$

observation

At

Bayesian Filtering for KFs

Can use Gaussian elimination to perform inference in "unrolled" model

- Start with prior belief $P(X_1)$ At every timestep have belief $P(X_t \mid y_{1:t-1})$ Condition on observation: $P(X_t \mid y_{1:t})$ Predict (multiply motion model): $P(X_{t+1}, X_t \mid y_{1:t})$ Multiply motion model

 - "Roll-up" (marginalize prev. time): P(X_{t+1} | y_{1:t})

Implementation

- Current belief: $P(x_t \mid y_{1:t-1}) = N(x_t; \eta_{X_t}, \Lambda_{X_t})$
- Multiply sensor and motion model

Motion model
$$P(X_{A+1}|X_K) \in \text{Regresented as CLG, canonical parms}$$

$$P(X_{A+1}|X_K|y_{1...K}) = P(X_K|y_{1..A+1}) P(X_{A+1}|X_K)$$

$$= \mathcal{N}(\cdot; \gamma_{K_K} + \gamma_M | \Lambda_{X_K} + \Lambda_M)$$
• Marginalize
$$P(X_{A+1}|y_{1...K}) = \mathcal{N}(\cdot; \gamma_A | \Lambda_{AA})$$

$$\eta_A^m = \eta_A - \Lambda_{AB}\Lambda_{BB}^{-1}\eta_B \qquad A = X_{A+1}|y_{1...}y_K$$

$$\Lambda_{AA}^m = \Lambda_{AA} - \Lambda_{AB}\Lambda_{BB}^{-1}\Lambda_{BA} \qquad B = X_{A+1}|y_{1...}y_K$$

What if observations not "linear"?

- Linear observations:
 - $Y_t = H X_t + noise$
- Nonlinear observations:

"Motion detector": Yt = 1 if Kt & R =0 otherwise

Incorporating Non-gaussian observations

- Nonlinear observation \rightarrow P(Y_t | X_t) not Gaussian
- First approach: Approximate P(Y_t | X_t) as CLG
 - Linearize P(Y_t | X_t) around current estimate E[X_t | y_{1..t-1}]
 - Known as Extended Kalman Filter (EKF)
 - Can perform poorly if P(Y_t | X_t) highly nonlinear
- Second approach: Approximate P(Y_t, X_t) as Gaussian
 - Takes correlation in X_t into account
 - After obtaining approximation, condition on Y_t=y_t (now a "linear" observation)

Finding Gaussian approximations

- Need to find Gaussian approximation of P(X_t,Y_t)
- How?
 - Gaussians in Exponential Family Moment matching!!

• E[Y_t] =
$$\int y P(y_t) dy_t = \int y P(y_t|X_t) P(X_t) dX_t dy_t$$

nonlinear Gaussian

•
$$E[Y_t^2] = \int y^2 P(y_x|x_x) P(x_x) A_{x_t} dy_x$$

•
$$E[X_t Y_t] = \int x y P(y_x | x_x) P(x_x) A x_x A y_x$$

Linearization by integration

- Need to integrate product of Gaussian with arbitrary function
- Can do that by numerical integration
 - Approximate integral as weighted sum of evaluation points

$$\int f(x_i y) p(x) dxdy \approx \sum_i w_i f(x_i^{(i)}, y_i^{(i)})$$

Thow should we choose ?

- Gaussian quadrature defines locations and weights of points
- For 1 dim: Exact for polynomials of degree D if choosing 2D points using Gaussian quadrature
- For higher dimensions: Need exponentially many points to achieve exact evaluation for polynomials
- Application of this is known as "Unscented" Kalman Filter (UKF)

Factored dynamical models

So far: HMMs and Kalman filters

- What if we have more than one variable at each time step?
 - E.g., temperature at different locations, or road conditions in a road network?
 - → Spatio-temporal models

Dynamic Bayesian Networks

At every timestep have a Bayesian Network

- Variables at each time step t called a "slice" S_t
- "Temporal" edges connecting S_{t+1} with S_t

Tasks

Read Koller & Friedman Chapters 6.2.3, 15.1