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Announcements
Homework 2 due today

Project milestones due next Monday (Nov 9)

About half the work should be done

4 pages of writeup, NIPS format

http://nips.cc/PaperInformation/StyleFiles
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So far
Markov Network Representation

Local/Global Markov assumptions; Separation

Soundness and completeness of separation

Markov Network Inference

Variable elimination and Junction Tree inference work 

exactly as in Bayes Nets

How about Learning Markov Nets?
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MLE for Markov Nets
Log likelihood of the data
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Log-likelihood doesn’t decompose

Log likelihood

l(D | θ) is concave function!

Log Partition function log Z(θ) doesn’t decompose
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Computing the derivative
Derivative

Computing P(ci | θ) requires inference!

Can optimize using conjugate gradient etc.
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Alternative approach: Iterative Proportional Fitting (IPF)

At optimum, it must hold that

� Solve fixed point equation

Must recompute parameters every iteration
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Parameter learning for log-linear models

Feature functions φi(Ci) defined over cliques

Log linear model over undirected graph G

Feature functions φ1(C1),…,φk(Ck)

Domains Ci can overlap

Joint distribution

How do we get weights wi?
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Optimizing parameters
Gradient of log-likelihood

Thus, w is MLE �
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Regularization of parameters
Put prior on parameters w
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Summary: Parameter learning in MN

MLE in BN is easy (score decomposes)

MLE in MN requires inference (score doesn’t 

decompose)

Can optimize using gradient ascent or IPF
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Generative vs. discriminative models

Often, want to predict Y for inputs X

Bayes optimal classifier: Predict according to P(Y | X)

Generative model

Model P(Y), P(X|Y)

Use Bayes’ rule to compute P(Y | X)

Discriminative model

Model P(Y | X) directly!

Don’t model distribution P(X) over inputs X

Cannot “generate” sample inputs

Example:  Logistic regression
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Example: Logistic Regression



14

Log-linear conditional random field
Define log-linear model over outputs Y

No assumptions about inputs X

Feature functions φi(Ci,x) defined over cliques and inputs

Joint distribution
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Example: CRFs in NLP

Classify into Person, Location or Other

Mrs. Greene spoke today in New York. Green chairs the finance committee

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12
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Example: CRFs in vision
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Parameter learning for log-linear CRF

Conditional log-likelihood of data

Can maximize using conjugate gradient
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Gradient of conditional log-likelihood

Partial derivative

Requires one inference per

Can optimize using conjugate gradient
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Exponential Family Distributions
Distributions for log-linear models

More generally: Exponential family distributions

h(x): Base measure

w: natural parameters

φ(x): Sufficient statistics

A(w): log-partition function

Hereby x can be continuous (defined over any set)
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Examples
Exp. Family:

Gaussian distribution

Other examples: Multinomial, Poisson, Exponential, 

Gamma, Weibull, chi-square, Dirichlet, Geometric, …

h(x): Base measure

w: natural parameters

φ(x): Sufficient statistics

A(w): log-partition function
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Moments and gradients

Correspondence between moments and log-partition 

function (just like in log-linear models)

Can compute moments from derivatives, and 

derivatives from moments!

MLE � moment matching
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Recall: Conjugate priors
Consider parametric families of prior distributions:

P(θ) = f(θ; α)

α is called “hyperparameters” of prior

A prior P(θ) = f(θ; α) is called conjugate for a 

likelihood function P(D | θ) if P(θ | D) = f(θ; α’)

Posterior has same parametric form

Hyperparameters are updated based on data D

Obvious questions (answered later):

How to choose hyperparameters??

Why limit ourselves to conjugate priors??
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Conjugate priors in Exponential Family

Any exponential family likelihood has a conjugate prior
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Maximum Entropy interpretation

Theorem: Exponential family distributions maximize 

the entropy over all distributions satisfying
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Summary exponential family
Distributions of the form

Most common distributions are exponential family

Multinomial, Gaussian Poisson, Exponential, Gamma, Weibull, chi-

square, Dirichlet, Geometric, …

Log-linear Markov Networks

All exponential family distributions have conjugate prior in EF

Moments of sufficient stats = derivatives of log-partition 

function

Maximum Entropy distributions (“most uncertain”

distributions with specified expected sufficient statistics)
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Exponential family graphical models

So far, only defined graphical models over 

discrete variables.

Can define GMs over continuous distributions! 

For exponential family distributions:

Can do much of what we discussed (VE, JT, parameter 

learning, etc.) for such exponential family models

Important example: Gaussian Networks
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Gaussian distribution

σ = Standard deviation

µ = mean
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Bivariate Gaussian distribution
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Multivariate Gaussian distribution

Joint distribution over n random variables P(X1,…Xn)

σjk = E[ (Xj – µj) (Xk - µk) ]

Xj and Xk independent � σjk=0
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Marginalization
Suppose  (X1,…,Xn) ~ N( µ, Σ)

What is P(X1)??

More generally: Let A={i1,…,ik} ⊆ {1,…,N}

Write XA = (Xi1
,…,Xik

)

XA ~ N( µA, ΣAA)
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Conditioning
Suppose (X1,…,Xn) ~ N( µ, Σ)

Decompose as (XA,XB)

What is P(XA | XB)??

P(XA = xA| XB = xB) = N(xA; µA|B, ΣA|B) where

Computable using linear algebra!
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Conditioning
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Conditional linear Gaussians
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Canonical representation of Gaussians
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Canonical Representation

Multivariate Gaussians in exponential family!

Standard vs canonical form:

µ = Λ-1 η

Σ = Λ-1

In standard form: Marginalization is easy

Will see: In canonical form, 
multiplication/conditioning is easy! 



36

Gaussian Networks

Zeros in precision matrix Λ indicate missing edges

in log-linear model!
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Inference in Gaussian Networks
Can compute marginal distributions in O(n3)!

For large numbers n of variables, still intractable

If Gaussian Network has low treewidth, can use 

variable elimination / JT inference!

Need to be able to multiply and marginalize factors!
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Multiplying factors in Gaussians
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Marginalizing in canonical form
Recall conversion formulas

µ = Λ-1 η

Σ = Λ-1

Marginal distribution



40

Variable elimination 

In Gaussian Markov Networks, Variable elimination = 

Gaussian elimination (fast for low bandwidth = low 

treewidth matrices)
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Tasks
Read Koller & Friedman Chapters 4.6.1, 8.1-8.3


