Probabilistic Graphical Models

Lecture 10 - Undirected Models

CS/CNS/EE 155
Andreas Krause

Announcements

- Homework 2 due this Wednesday (Nov 4) in class
- Project milestones due next Monday (Nov 9)
- About half the work should be done
- 4 pages of writeup, NIPS format
- http://nips.cc/PaperInformation/StyleFiles

Markov Networks

(a.k.a., Markov Random Field, Gibbs Distribution, ...)

- A Markov Network consists of
- An undirected graph, where each node represents a RV
- A collection of factors defined over cliques in the graph
- Joint probability

$$
P(x)=\frac{1}{z} \prod_{i} \psi_{i}\left(C_{i}\right)
$$

P

- A distribution factorizes over undirected graph G if
\ni factors $\psi_{i} \ldots K_{k}$ overcligues of G s.t.

$$
P(x)=\frac{1}{z} \prod_{i} \psi_{i}\left(c_{i}\right)
$$

Computing Joint Probabilities

- Computing joint probabilities in ENs

$$
P\left(X_{i}, \ldots, X_{m}\right)=\prod_{i} P\left(X_{i} \mid P a_{i}\right) \quad P\left(X_{l} \mid X_{m}\right)
$$

actually comp. $P\left(X_{1}, X_{n}\right)$

$$
Z=\sum_{x} \prod_{i} \psi_{i}\left(c_{i}\right)
$$

- Computing joint probabilities in Markov Nets

$$
P\left(\underline{x_{1} \ldots x_{a}}\right)=\frac{1}{\frac{1}{z}} \prod_{i} \psi_{i}\left(C_{i}\right)
$$

Need to know partition "function" z

$$
\text { Con compute } \frac{P\left(x_{1} \ldots x_{m}\right)}{P\left(x_{i}^{\prime} \ldots x_{n}^{\prime}\right)}=\frac{\prod_{i} \psi_{i}\left(c_{i}\right)}{\prod_{i} \psi_{i}\left(c_{i}^{1}\right)}
$$

Local Markov Assumption for MN

- The Markov Blanket MB(X) of a node X is the set of neighbors of X
- Local Markov Assumption: $\mathrm{X} \perp$ EverythingElse \| $\mathrm{MB}(\mathrm{X})$
- $I_{\text {loc }}(G)=$ set of all local independences
- G is called an I-map of distribution P if $I_{\text {loc }}(G) \subseteq I(P)$

Factorization Theorem for Markov Nets " $>$ "

True distribution P
can be represented exactly as a Markov net (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i} \phi_{i}\left(\mathbf{C}_{i}\right)
$$

$$
\mathrm{I}_{\mathrm{loc}}(\mathrm{G}) \subseteq \mathrm{I}(\mathrm{P})
$$

G is an I-map of P (independence map)

Factorization Theorem for Markov Nets " - " Hammersley-Clifford Theorem

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

G is an I-map of P
(independence map) and $P>0$

True distribution P can be represented exactly as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

i.e., P can be represented as
a Markov net (G,P)

Global independencies

- A trail $X-X_{1}-\ldots-X_{m}-Y$ is called active for evidence E, if none of $X_{1}, \ldots, X_{m} \in \mathbf{E}$
- Variables X and Y are called separated by E if there is no active trail for E connecting X, Y Write $\operatorname{sep}(X, Y \mid E)$
- $I(G)=\{X \perp Y \mid E: \operatorname{sep}(X, Y \mid E)\}$

Soundness of separation

- Know: For positive distributions $\mathrm{P}>0$

$$
I_{\mathrm{Ioc}}(G) \subseteq I(P) \Leftrightarrow P \text { factorizes over } G
$$

- Theorem: Soundness of separation

For positive distributions $\mathrm{P}>0$

$$
I_{\mathrm{Ioc}}(G) \subseteq I(P) \Leftrightarrow I(G) \subseteq I(P)
$$

- Hence, separation captures only true independences
- How about $\mathrm{I}(\mathrm{G})=\mathrm{I}(\mathrm{P})$?

Completeness of separation

Theorem: Completeness of separation

$$
I(G)=I(P)
$$

for "almost all" distributions P that factorize over G
"almost all": Except for of potential parameterizations of measure 0 (assuming no finite set have positive measure)

Minimal I-maps

- For BNs: Minimal I-map not unique

- For MNs: For positive P, minimal I-map is unique!!

P-maps

- Do P-maps always exist?
- For BN: no

- How about Markov Nets?

does not have MN P-map!

Exact inference in MNs

- Variable elimination and junction tree inference work exactly the same way!
- Need to construct junction trees by obtaining chordal graph through triangulation

Pairwise MNs

- A pairwise MN is a MN where all factors are defined over single variables or pairs of variables
- Can reduce any MN to pairwise MN!

Logarithmic representation

- Can represent any positive distribution in log domain

$$
\begin{aligned}
& P(x)=\frac{1}{2} \prod_{i} \psi_{i}\left(c_{i}\right) \\
& \log P(x)=\sum_{i} \underbrace{\log \psi_{i}\left(c_{i}\right)}_{\varphi_{i}\left(c_{i}\right)}-\log z \\
& P(x)=\frac{1}{z} \exp \left(\sum_{i} \varphi_{i}\left(c_{i}\right)\right)
\end{aligned}
$$

Log-linear models

- Feature functions $\phi_{i}(D)$ defined over cliques

$$
\phi_{i}\left(x_{i}, x_{i+1}\right)= \begin{cases}1 & \text { if } x_{i}=x_{i+1} \\ 0 & \text { otharwise }\end{cases}
$$

- Log linear model over undirected graph G
- Feature functions $\phi_{1}\left(D_{1}\right), \ldots, \phi_{k}\left(D_{k}\right)$
- Domains D_{i} can overlap
- Set of weights w_{i} learnt from data

$$
P(x)=\frac{1}{q} \exp \left(\sum_{i} w_{i}^{\top} \phi_{i}\left(C_{i}\right)\right)
$$

Converting BNs to MNs

Theorem: Moralized Bayes net is minimal Markov I-map

Converting Ns to ENs

Resulting $B N$ has for finer cold. independencies than original MN

$$
\begin{array}{cc}
I\left(G^{\prime}\right) & I(G) \\
\lambda N & \uparrow \\
B^{\prime} N
\end{array}
$$

Theorem: Minimal Bayes I-map for MN must be chordal

So far

- Markov Network Representation
- Local/Global Markov assumptions; Separation
- Soundness and completeness of separation
- Markov Network Inference
- Variable elimination and Junction Tree inference work exactly as in Bayes Nets
- How about Learning Markov Nets?

Parameter Learning for Bayes nets

$$
\begin{aligned}
& \log P(D \mid \theta)=\log \prod_{l} \prod_{i} P\left(x_{i}^{(l)} P a_{i}^{(l)} ; \theta\right) \\
& =\sum_{l} \sum_{i} \log P\left(x_{i}^{(l)} \mid P_{a_{i}^{(l)}}^{(\ell)} ; \theta_{x_{i} i P_{a}}\right)^{\swarrow} \begin{array}{c}
\text { Parameter indepact }
\end{array} \\
& \frac{\partial}{\partial \theta_{\lambda_{i} \mid}\left(P_{\alpha_{i}}\right.} \log P(D \mid \theta)=\sum_{j} \sum_{l} \frac{\partial}{\partial \theta_{X_{i}}\left(P_{a_{i}}\right.} \log P\left(X_{i}^{(l)}\left(\rho_{a_{i}}{ }^{(l)} ; \theta_{x_{j}\left(P_{j i}\right)}\right)\right. \\
& =\sum_{l} \frac{\partial}{\partial \theta_{x_{i}}\left(\rho_{x_{i}}\right.} \log P\left(x_{i}^{(l)}\left|\rho_{a_{i}}, \theta_{x_{i}}\right| \rho_{a_{i}}\right) \stackrel{!}{=} 0
\end{aligned}
$$

Problem breaks down into in de pend t subproblons Learn every CPD indepand Af of others

Algorithm for BN MLE
Given BN structure G
For each variable X_{i}

$$
\text { lean } \hat{\theta}_{x_{i} \mid \rho a_{i}}=\frac{\operatorname{Cont}\left(x_{i}, \rho a_{i}\right)}{\operatorname{Cont}\left(\rho a_{i}\right)}
$$

\Rightarrow globally maximum likelihood estimate for fixed structure G

MLE for Markov Nets

- Log likelihood of the data

$$
\begin{aligned}
& \log P(D \mid \theta)=\sum_{l} \log P\left(x^{(l)} \mid \theta\right) \\
& =\sum_{l=1}^{m} \log \frac{1}{z} \prod_{i} \psi_{i}\left(C_{i}^{(l)}\right) \\
& =\sum_{l} \sum_{i} \log \psi_{i}\left(c_{i}^{(l)}\right)-m \log Z \\
& =m \sum_{i} \sum_{c_{i}} \underset{(n B N)}{\tilde{P}\left(c_{i}\right) \underset{\log P\left(K_{i}\left(P a_{i}\right)\right.}{\log \psi_{i}\left(c_{i}\right)}-\underset{\text { not in } B}{m \log Z}} \\
& z=z(\theta)=\sum_{x} \prod_{i}{\underset{i}{\text { ono }}}^{\psi_{i}}\left(c_{i}\right) \quad \log z=\log \prod_{x} \prod_{i} \psi_{i}\left(c_{i}\right)
\end{aligned}
$$

Log-likelihood doesn't decompose

- Log likelihood

$$
\log P(\mathcal{D} \mid \theta)=m \underbrace{\sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)}_{\text {decomposes nicely }}-\underbrace{m \log Z(\theta)}_{\substack{ \\\operatorname{docs} n^{n} t}}
$$

- ID $\mid \theta)$ is concave function! $\lg \mathrm{P}(0,6)$

No local options!
Gradient ascent won't get stich!

- Log Partition function $\log Z(\theta)$ doesn't decompose

Derivative of log-likelihood

$$
\begin{aligned}
\log P(\mathcal{D} \mid \theta) & =m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z(\theta) \\
\frac{\partial \log P(D \mid \theta)}{\partial \psi_{i}\left(c_{i}\right)} & =\underbrace{m \sum_{j} \sum_{c_{i}} \hat{P}\left(c_{j}\right) \frac{\partial}{\partial \psi_{i}\left(c_{i}\right)} \log \psi_{j}\left(c_{i j}\right)}_{j}-m \frac{\partial}{\partial \psi_{i}\left(c_{i}\right)} \log Z(\theta) \\
& =m \hat{P}\left(c_{i}\right) \frac{1}{\psi_{i}\left(c_{i}\right)}-m \frac{\partial}{\partial \psi_{i}\left(c_{i j}\right)} \log Z(\theta)
\end{aligned}
$$

Derivative of log-likelihood

$$
\begin{aligned}
& \psi_{i}=\begin{array}{l|l|l}
A_{i} B & \psi_{i}(A, B) \\
\hline 0 & 0 & \psi_{i}(0,0) \\
0 & 1 & \psi_{i}(0,1) \\
1 & 0 & \partial \log P(\mathcal{D} \mid \theta) \\
1 & 1 & \vdots \frac{\partial \log }{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}
\end{array}=m \frac{\hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-m \frac{\partial \log Z(\theta)}{\partial \psi\left(\mathbf{c}_{i}\right)} \\
& \frac{\partial \log Z(\theta)}{\partial \psi_{i}\left(c_{i}\right)}=\frac{\frac{\partial}{\partial \psi_{i}\left(c_{i}\right)} Z(\theta)}{Z(\theta)}=\frac{\not Z P\left(c_{i}(\theta)\right.}{Z \psi_{i}\left(c_{i}\right)}=\frac{P\left(c_{i}(\theta)\right.}{\psi_{i}\left(c_{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{X \sim c_{i}} \prod_{j \neq i} \psi_{j}\left(c_{j}\right) \frac{\psi_{i}\left(c_{n}\right)}{\psi_{i}\left(c_{i}\right)} \\
& =\frac{\sum P\left(c_{i} \mid \theta\right)}{\psi_{i}\left(c_{i}\right)}
\end{aligned}
$$

Computing the derivative

- Derivative

$$
\begin{gathered}
\frac{\partial \log P(\mathcal{D} \mid \theta)}{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}=m \frac{\hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-m \frac{P\left(\mathbf{c}_{i} \mid \theta\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)} \\
\frac{\partial \log P(\theta(\theta)}{\partial \psi_{G}(G=1, D=0,1=1)}=m \frac{\hat{P}(1,0,1)}{\psi_{i}(1,0,1)}-m \frac{P(1,0,1 \mid \theta)}{\psi_{i} \cdot(1,0,1)}
\end{gathered}
$$

- Computing $\mathrm{P}\left(\mathrm{c}_{\mathrm{i}} \mid \theta\right)$ requires inference! Junction tree...
- Can optimize using conjugate gradient etc.

Alternative approach: Iterative Proportional Fitting (IPF)

- At optimum, it must hold that

$$
\begin{aligned}
& \frac{\partial \log P(\mathcal{D} \mid \theta)}{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}=m \frac{\hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-m \frac{P\left(\mathbf{c}_{i} \mid \theta\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}=0 \\
& \text { At opt:: } \quad \frac{\hat{P}\left(c_{i}\right)}{\psi_{i}\left(c_{i}\right)}=\frac{P\left(c_{i}(\theta)\right.}{\psi_{i}\left(c_{i}\right)} \quad \text { "Data agrees with } \quad \text { model on marginals" }
\end{aligned}
$$

\rightarrow Solve fixed point equation $\quad \psi_{i}^{(0)}\left(c_{i}\right)=1$

$$
\psi_{i}^{(x+1)}\left(c_{i}\right)=\psi_{i}^{(t)}\left(c_{i}\right) \cdot \frac{\hat{P}\left(c_{i}\right)}{P\left(c_{i} \mid \theta\right)}
$$

- Must recompute parameters every iteration $P\left(c_{i}(\theta)\right.$

Parameter learning for log-linear models

- Feature functions $\phi_{i}\left(\mathrm{C}_{\mathrm{i}}\right)$ defined over cliques
- Log linear model over undirected graph G
- Feature functions $\phi_{1}\left(C_{1}\right), \ldots, \phi_{k}\left(C_{k}\right)$
- Domains Ci can overlap
- Joint distribution

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \underline{\exp \left(\sum_{i} w_{i}^{T} \phi_{i}\left(C_{i}\right)\right)}
$$

- How do we get weights w_{i} ?

Derivative of Log-likelihood 1

$$
\begin{aligned}
& \frac{\partial \log P(\mathcal{D} \mid \theta)}{\partial w_{i}}=m \underbrace{m \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \frac{\partial w_{i}^{T} \phi_{i}\left(\mathbf{c}_{i}\right)}{\partial w_{i}}}-m \frac{\partial \log Z(w)}{\partial w_{i}} \\
& =m \underbrace{\sum_{c_{i}} \hat{P}\left(c_{i}\right) \phi_{i}\left(c_{i}\right)}-m \frac{\partial \log q(w)}{\partial w_{i}} \\
& \hat{E}\left[\phi_{i}\right] \\
& \text { If } \phi_{i}\left(x_{i}, x_{i}+1\right)=\left\{\begin{array}{ll}
1 & \text { if } x_{i}=x_{i+1} \\
0 & \text { othemise }
\end{array}, \hat{E}\left[\phi_{i}\right]=\frac{\operatorname{coant}\left(x_{i}=x_{i+1}\right)}{m}\right.
\end{aligned}
$$

Derivative of Log-likelihood 2

$$
\begin{aligned}
& \frac{\partial \log P(\mathcal{D} \mid \theta)}{\partial w_{i}}=m \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \phi_{i}\left(\mathbf{c}_{i}\right)-m \frac{\partial \log Z(w)}{\partial w_{i}} \\
& \frac{\partial}{\partial w_{i}} \log Z(w)=\frac{1}{z(w)} \frac{\partial}{\partial w_{i}} \sum_{x} \exp \left(\sum_{i} w_{i}^{T} \phi_{i}\left(c_{i}\right)\right) \\
&=\frac{1}{z(w)} \sum_{x} \phi_{i}\left(c_{i}\right) \exp \left(\sum_{i} w_{i}^{\top} \phi_{i}\left(c_{i}-1\right)\right. \\
&=\sum_{x} \phi_{i}\left(c_{i}\right) \\
&=\sum_{c_{i}} \phi_{i}\left(c_{i}\right) P\left(c_{i}(w)\right. \\
&=\mathbb{E} w\left(\phi_{i}\right)
\end{aligned}
$$

Optimizing parameters

- Gradient of log-likelihood

$$
\frac{\partial \log P(\mathcal{D} \mid w)}{\partial w_{i}}=m \underbrace{\sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \phi_{i}\left(\mathbf{c}_{i}\right)}_{\mathbb{E}\left(\phi_{i}\right)}-m \underbrace{\sum_{\mathbf{c}_{i}} P\left(\mathbf{c}_{i} \mid w\right) \phi_{i}\left(\mathbf{c}_{i}\right)}_{\mathbb{E}_{w}\left(\phi_{i}\right)}
$$

- Thus, w is MLE $\Leftrightarrow \hat{\mathbb{E}}\left[\phi_{i}\right]=\mathbb{E}_{w}\left[\phi_{i}\right]$

Regularization of parameters

- Put prior on parameters w $P(w)$

$$
\frac{\partial \log P(\mathcal{D} \mid w) P(w)}{\partial w_{i}}=m \underbrace{m \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \phi_{i}\left(\mathbf{c}_{i}\right)-m \sum_{\mathbf{c}_{i}} P\left(\mathbf{c}_{i} \mid w\right) \phi_{i}\left(\mathbf{c}_{i}\right)}_{\text {last slide }}+\underbrace{\frac{\partial \log P(w)}{\partial w_{i}}}_{(*)}
$$

Prior: $P(w)=N(w ; 0, I) \propto \exp \left(-\sum_{i} w_{i}^{2}\right)$

$$
\begin{gathered}
(*) \quad \log P(w)=-\sum_{i} w_{i} 2 \\
\frac{\partial}{\partial w_{i}} \log P(w)=-2 w_{i}
\end{gathered}
$$

Summary: Parameter learning in MN

- MLE in BN is easy (score decomposes)
- MLE in MN requires inference (score doesn't decompose)
- Can optimize using gradient ascent or IPF

Tasks

- Read Koller \& Friedman Chapters 20.1-20.3, 4.6.1

