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Announcements
Homework 2 due this Wednesday (Nov 4) in class

Project milestones due next Monday (Nov 9)

About half the work should be done

4 pages of writeup, NIPS format

http://nips.cc/PaperInformation/StyleFiles



3

Markov Networks
(a.k.a., Markov Random Field, Gibbs Distribution, …)

A Markov Network consists of

An undirected graph, where each node represents a RV

A collection of factors defined over cliques in the graph

Joint probability

A distribution factorizes over undirected graph G if
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Computing Joint Probabilities
Computing joint probabilities in BNs

Computing joint probabilities in Markov Nets
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Local Markov Assumption for MN

The Markov Blanket MB(X)

of a node X is the set of 

neighbors of X

Local Markov Assumption:

X ⊥ EverythingElse | MB(X)

Iloc(G) = set of all local 

independences 

G is called an I-map of 

distribution P if Iloc(G) ⊆ I(P)
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Factorization Theorem for Markov Nets “�”
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Iloc(G) ⊆ I(P)

G is an I-map of P

(independence map)

True distribution P

can be represented exactly as

a Markov net (G,P)
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Factorization Theorem for Markov Nets “”

Hammersley-Clifford Theorem
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Iloc(G) ⊆ I(P)

True distribution P

can be represented exactly as

G is an I-map of P

(independence map)

and P>0

i.e., P can be represented as

a Markov net (G,P)
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Global independencies
A trail X—X1—…—Xm—Y is 

called active for evidence E, if 

none of X1,…,Xm ∈ E

Variables X and Y are called 

separated by E if there is no 

active trail for E connecting X, Y

Write sep(X,Y | E)

I(G) = {X | Y | E: sep(X,Y|E)}
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Soundness of separation
Know:  For positive distributions P>0

Iloc(G) ⊆ I(P) � P factorizes over G

Theorem:  Soundness of separation

For positive distributions P>0

Iloc(G) ⊆ I(P) � I(G) ⊆ I(P)

Hence, separation captures only true independences

How about I(G) = I(P)?
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Completeness of separation
Theorem:  Completeness of separation

I(G) = I(P) 

for “almost all” distributions P that factorize over G

“almost all”: Except for of potential parameterizations 

of measure 0 (assuming no finite set have positive 

measure)
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Minimal I-maps
For BNs: Minimal I-map not unique

For MNs: For positive P, minimal I-map is unique!!

E B

A

J M

E B

A

J M

J M

A

E B



12

P-maps
Do P-maps always exist?

For BNs: no

How about Markov Nets?



13

Exact inference in MNs
Variable elimination and junction tree inference work 

exactly the same way!

Need to construct junction trees by obtaining chordal graph 

through triangulation
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Pairwise MNs
A pairwise MN is a MN where all factors are defined 

over single variables or pairs of variables

Can reduce any MN to pairwise MN!
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Logarithmic representation
Can represent any positive distribution in log domain
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Log-linear models
Feature functions φi(D) defined over cliques

Log linear model over undirected graph G

Feature functions φ1(D1),…,φk(Dk)

Domains Di can overlap

Set of weights wi learnt from data
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Converting BNs to MNs

Theorem: Moralized Bayes net is minimal Markov I-map 
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Converting MNs to BNs

Theorem: Minimal Bayes I-map for MN must be chordal
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So far
Markov Network Representation

Local/Global Markov assumptions; Separation

Soundness and completeness of separation

Markov Network Inference

Variable elimination and Junction Tree inference work 

exactly as in Bayes Nets

How about Learning Markov Nets?
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Parameter Learning for Bayes nets
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Algorithm for BN MLE
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MLE for Markov Nets
Log likelihood of the data
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Log-likelihood doesn’t decompose

Log likelihood

l(D | θ) is concave function!

Log Partition function log Z(θ) doesn’t decompose
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Derivative of log-likelihood
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Derivative of log-likelihood
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Computing the derivative
Derivative

Computing P(ci | θ) requires inference!

Can optimize using conjugate gradient etc.
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Alternative approach: Iterative Proportional Fitting (IPF)

At optimum, it must hold that

� Solve fixed point equation

Must recompute parameters every iteration
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Parameter learning for log-linear models

Feature functions φi(Ci) defined over cliques

Log linear model over undirected graph G

Feature functions φ1(C1),…,φk(Ck)

Domains Ci can overlap

Joint distribution

How do we get weights wi?
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Derivative of Log-likelihood 1
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Derivative of Log-likelihood 2
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Optimizing parameters
Gradient of log-likelihood

Thus, w is MLE �
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Regularization of parameters
Put prior on parameters w
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Summary: Parameter learning in MN

MLE in BN is easy (score decomposes)

MLE in MN requires inference (score doesn’t 

decompose)

Can optimize using gradient ascent or IPF
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Tasks
Read Koller & Friedman Chapters 20.1-20.3, 4.6.1


