Probabilistic Graphical Models

Lecture 9 - Undirected Models

CS/CNS/EE 155
Andreas Krause

Announcements

- Homework 2 due next Wednesday (Nov 4) in class
- Start early!!!
- Project milestones due Monday (Nov 9)
- 4 pages of writeup, NIPS format
- http://nips.cc/PaperInformation/StyleFiles

Best project award!!

Answering multiple queries

$$
\begin{aligned}
& X_{1} \longrightarrow X_{3} \longrightarrow P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2}\left(x_{1}\right) \sum_{x_{3}} P\left(x_{6} \mid x_{2}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{3}\right) P\left(x_{5} \mid x_{6}\right)\right. \\
& P\left(x_{1}, x_{5}\right)=
\end{aligned}
$$

Can computer in $O(n)$ operations (t, k)
$P\left(x_{2}, x_{5}\right)$ costs $O(x)$ ops.

$$
P\left(x_{i}, x_{5}\right)-" O(n) \text { ops }
$$

If compute $P\left(x_{i} \mid x_{j}\right) \forall i \Rightarrow \theta\left(m^{2}\right)$
Can we reduce this to $O(n)$??

Reusing computation

$$
P\left(x_{1}, x_{5}\right)=P\left(x_{1}\right) \sum_{x_{2}} P(x_{2}\left(x_{1}\right) \underbrace{\sum_{x_{0}} P\left(x_{3} \mid x_{2}\right) \underbrace{\sum_{x_{4}} P\left(x_{4} \mid x_{3}\right) P\left(y_{5} \mid x_{0}\right)}_{g_{4}\left(x_{3}, x_{5}\right)}}_{x_{3}\left(x_{2}, x_{5}\right)}
$$

$$
P\left(x_{2}, x_{5}\right)=\sum_{x_{1}} P\left(x_{1}\right) P(x_{2}\left(x_{6}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{2}\right) \underbrace{\sum_{x_{4}} P\left(x_{4} \mid x_{3}\right) P\left(x_{5} \mid x_{6}\right)}_{g_{6}\left(x_{3}, x_{5}\right)}
$$

already compared!
Want to "cache" our computations!

Next

- Will learn about algorithm for efficiently computing all marginals $P\left(X_{i} \mid E=e\right)$ given fixed evidence $E=e$
- Need appropriate data structure for storing the computation
\rightarrow Junction trees

Junction trees

A junction tree for a collection of factors:

- A tree, where each node is a cluster of variables
- Every factor contained in some cluster C_{i}
- Running intersection property: If $X \in C_{i}$ and $X \in C_{j}$, and C_{m} is on the path between C_{i} and C_{j}, then $X \in C_{m}$

VE constructs a junction tree

- One clique C_{i} for each factor f_{i} created in VE
- C_{i} connected to C_{j} if f_{i} used to generate f_{j}
- Every factor used only once $\boldsymbol{\rightarrow}$ Tree
- Theorem: resulting tree satisfies RIP

Constructing JT from chordal graph

1. Moralize

2. Triangulate (make chordal)
3. Identify max. diques
4. Connect cliques into undirected graph $\left.w\left(C_{i}, C_{j}\right)^{\prime}=\mid C_{i} \cap C_{j}\right)^{2}$
5. Find Max $S T$

\Rightarrow Results in valid junction tree

Junction trees and independence

Theorem:

- Suppose
- T is a junction tree for graph G and factors F
- Consider edge $\mathbf{C}_{\mathbf{i}}-\mathbf{C}_{\mathbf{i}}$ with separator $\mathbf{S}_{\mathbf{i}, j}=C_{i} \wedge \mathbb{C}_{\boldsymbol{j}}$
- Variables \mathbf{X} and \mathbf{Y} on opposite sites of separator
- Then $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{S}_{\mathrm{i}, \mathrm{j}}$
- Furthermore, $I(T) \subseteq I(G)$

VE as message passing

$$
=\sum_{c} \Pi(C, 0)
$$

2: DIG - $3: \mathrm{GIS}$

$$
\begin{aligned}
& \left.\delta_{2 \rightarrow 3}(1, G) \quad \delta_{a \rightarrow 3}(J L) \quad \delta_{5 \rightarrow 4}(G)\right) \\
& =\sum_{D} \pi\left(D_{1}(G) \cdot \delta_{t \rightarrow 2}(D)=\sum_{L} \pi(G S S) \delta_{S \rightarrow 4}=\sum_{H} \pi\left(H,\left(G_{2}\right)\right)\right. \\
& P(G)=\sum_{i S} \pi(G, S) \delta_{2 \rightarrow 3}(G G) \delta_{G \rightarrow 3}(G S)
\end{aligned}
$$

VE for computing X_{i}

- Pick root (any clique containing X_{i})
- Don't eliminate, only send messages recursively from leaves to root
- Multiply incoming messages with clique potential
- Marginalize variables not in separator
- Root "ready" when received all messages

Correctness of message passing

- Theorem: When root ready (received all messages), all variables in root have correct potentials
- Follows from correctness of VE
- So far, no gain in efficiency $*$

Does the choice of root affect messages?

$$
\begin{aligned}
\text { Instead of } O\left(n^{2}\right) \rightarrow & O(n) \\
& 1 \text { message per edge per direction }
\end{aligned}
$$

Shenoy-Shafer algorithm

- Clique i ready if received messages from all neighbors but 1
- Leaves always ready
- While there exists a message $\delta_{i \rightarrow j}$ ready to transmit send message

Complexity? $O\left(m 2^{\text {trecwidth }}\right)$

$$
\begin{aligned}
& \text { I my per ebge per direchion } \\
& \text { "Only" exp. in treewidth }
\end{aligned}
$$

Theorem: At convergence, every clique has correct beliefs

Inference using VE

- Want to incorporate evidence $\mathrm{E}=\mathrm{e}$
- Multiply all cliques containing evidence variables with indicator potential 1_{e}

$$
\text { (AB) } \quad I_{A=T}(a, b)=\begin{array}{ll}
1 & \text { if } a=7 \\
0 & \text { if } a=F
\end{array}
$$

- Perform variable elimination

Summary so far

- Junction trees represent distribution
- Constructed using elimination order
- Make complexity of inference explicitly visible
- Can implement variable elimination on junction trees to compute correct beliefs on all nodes
- Now:
- Belief propagation - an important alternative to VE on junction trees.
- Will later generalize to approximate inference!
- Key difference: Messages obtained by division rather than multiplication

Message passing by factor division

- Variable elimination:
- Message \rightarrow Belief

$$
\delta_{2 \rightarrow 3}(1 G)=\sum_{D} \Pi_{2}^{(0)}(D, G) \delta_{1 \rightarrow 2}(D)
$$

Belief at 3: $\Pi_{3}^{(0)}(G \mid \delta) \cdot \delta_{2 \rightarrow 3}(G)$

- Factor division:
- Belief \rightarrow Message

Belief at 2. $\Pi_{2}^{(0)}(D / G) \cdot \delta_{1 \rightarrow 2}(0)-\delta_{3 \rightarrow 2}(1 G)$

Belief about Sep. 1G: $\sigma_{2 \rightarrow 3}^{(t)}(G)=\sum_{D} \Pi_{2}^{(t)}\left(D(G) \longleftarrow \operatorname{Send}_{t_{0}}\right.$ as ans

$$
\text { Belief ot 3: } \Pi_{3}^{(t+1)}\left[G(s)=\Pi_{3}^{(0)}(G / s) \cdot \frac{\delta_{2 \rightarrow 3}^{(1)}(16)}{\delta_{3 \rightarrow 2}(16)}=\frac{\sum_{0} \pi_{3}^{(0)}\left(G(s) \Pi_{2}^{(0)} \cdot \delta_{1 \rightarrow 2} \delta_{3 \rightarrow 2}\right.}{\delta_{3 \rightarrow 2}}\right.
$$

Factor division

$$
\begin{aligned}
& f_{1}(A, B, C) \quad f_{2}(B, C) \\
& f=\frac{f_{1}}{f_{2}} \quad f(A, B, C)=\frac{f_{1}(A, B, C)}{f_{2}(B, C)}
\end{aligned}
$$

with the convention that $\frac{0}{0}=0$

Clique and separator potentials

$$
\Pi_{1}^{(0)}(A B)=P(A) \cdot P(B \mid A) \quad \Pi_{2}^{(0)}(B C)=P(C(B)
$$

Belief about

$$
\sigma_{1 \rightarrow 2}^{(0)}(B)=\sum_{A} \pi_{1}^{(0)}(A B) \Longrightarrow \sigma_{2 \rightarrow 1}^{(0)}(B)=\sum_{C} \pi_{2}^{(0)}(B C)
$$

At convergua: $\quad \Pi_{1}^{(t)}(A B)>P(A B) \quad \Pi_{2}^{(x)}=P(B C)$

$$
\sigma_{1 \rightarrow 2}^{(t)}(B)=\sum_{\pi} \pi_{1}^{(t)}(A B)=P(B)=\sigma_{2 \rightarrow 1}^{(t)}=\mu_{12}(B)
$$

Call such a JT with potentials $\Pi_{1}^{(t)} \ldots \Pi_{2}^{(T)}$ that agree on separators "calibrated"

Lauritzen-Spiegelhalter algorithm (a.k.a. Belief Propagation)

- Initialize separator potentials $\mu_{i j}$

- One per edge, initialized to 1 stores last onsg acrooss edge $i-j$
- Messages $i \rightarrow j$

$$
\begin{aligned}
& \sigma_{i \rightarrow j}\left(C_{j} \cap c_{i}\right)=\sum_{C_{i} \sum_{j}} \Pi_{i}^{(t)} \\
& \Pi_{j}^{(1+1)}=\Pi_{j}^{(t)} \cdot \frac{\sigma_{i \rightarrow j}}{\mu_{i j}} \\
& \mu_{i j}=\sigma_{i \rightarrow j}
\end{aligned}
$$

Correctness of Belief propagation

- Complexity linear in \#cliques
- Theorem:

At convergence, every clique has correct beliefs (when using correct message order, i.e., leaves to root and back)
\rightarrow Corollary:
Junction tree is calibrated (cliques agree on separator)

Comparison of VE and BP messages

- Variable elimination

$$
\delta_{3 \rightarrow 4}=\sum_{C_{3} \backslash C_{4}} \pi_{3}^{(0)} S_{1 \rightarrow 3} \delta_{2 \rightarrow 3}
$$

- Belief propagation

Understanding BP

- Junction tree potential

$$
\Pi_{T}(x)=\frac{\prod_{i} \Pi_{G}\left(c_{i}\right)}{\prod_{i j} \mu_{i j}\left(c_{i} \cap c_{j}\right)}
$$

- Junction tree invariant

$$
\Pi_{T}(x)=P(x)
$$

- Theorem: BP maintains Junction tree invariant
\rightarrow BP reparametrizes clique and separator potentials

Advantages and disadvantages of junction tree inference

- Advantages
- Can answer multiple queries (for same evidence) efficiently
- Can perform incremental updates
- Disadvantages
- No factors are "deleted"
- Can't prune away unnecessary variables
- Slower for a single query

Summary so far

- Bayesian Networks
- Representation
- Learning (MLE / Bayesian) with fully observed data
- Exact Inference
- Next
- Undirected models
- Approximate inference
- Hidden variables

Representing the world using BNs

True distribution P^{\prime} with cond. ind. $I\left(P^{\prime}\right)$

Bayes net (G,P) with I(P)

- Want to make sure that $\mathrm{I}(\mathrm{P}) \subseteq \mathrm{I}\left(\mathrm{P}^{\prime}\right)$
- Ideally: $I(P)=I\left(P^{\prime}\right)$
- Want BN that exactly captures independencies in P^{\prime} !

Perfect maps

- Minimal I-maps are easy to find, but can contain many unnecessary dependencies.
- A BN structure G is called P-map (perfect map) for distribution P if $I(G)=I(P)$
- Does every distribution P have a P-map?

Existence of perfect maps

$$
\begin{aligned}
x_{1}, \ldots x_{4} & x_{1} \perp x_{3} \mid x_{2} x_{4} \\
& x_{2} \perp x_{4} \mid x_{1}, x_{3}
\end{aligned}
$$

- Will have undirected model as P-map

Undirected Parameterization

Markov Networks

(a.k.a., Markov Random Field, Gibbs Distribution, ...)

- A Markov Network consists of
- An undirected graph, where each node represents a RV
- A collection of factors defined over cliques in the graph
- Joint probability

$$
P(x)=\frac{1}{z} \prod_{i} \psi_{i}\left(C_{i}\right)
$$

P

- A distribution factorizes over undirected graph G if
\ni factors $\psi_{i} \ldots K_{k}$ overcligues of G s.t.

$$
P(x)=\frac{1}{z} \prod_{i} \psi_{i}\left(c_{i}\right)
$$

Example MN: Image denoising

X_{i} : noisy pixels
Y_{i} : "true" pixels

Computing Joint Probabilities

- Computing joint probabilities in ENs

$$
P\left(x_{1}, \ldots, x_{m}\right)=\prod_{i} P\left(x_{i} \mid P a_{i}\right)
$$

$$
P\left(X_{1} d X_{n}\right)
$$

actually comp. $P\left(X_{1}, X_{n}\right)$

- Computing joint probabilities in Markov Nets

$$
P\left(x_{1} \ldots x_{a}\right)=\frac{1}{z} \prod_{i} \psi_{i}\left(C_{i}\right)
$$

Need to know partition "Unction" z

$$
\text { Con conipate } \frac{P\left(x_{1} \ldots x_{n}\right)}{P\left(x_{i}^{1} \ldots x_{n}^{1}\right)}=\frac{\prod_{i} \psi_{i}\left(c_{i}\right)}{\prod_{i} \psi_{i}\left(c_{i}^{1}\right)}
$$

Independences in Markov Nets?

- In Bayes Nets (G,P)
- Local Markov Assumption: $\mathrm{X} \perp$ NonDesc(X) | Pa_{x}
- G is I-map for distribution P if Local Markov Assumption holds
- Factorization Thm: P factorizes over G $\Leftrightarrow \mathrm{G}$ is an I-map
- Global independences: d-separation
- Completeness and soundness of d-separation
- How about Markov Nets?
- What's the analog of the Local Markov Assumption?
- Is there a factorization theorem for Markov Nets?
- What replaces d-separation?

Local Markov Assumption for MN

- The Markov Blanket MB(X) of a node X is the set of neighbors of X
- Local Markov Assumption: $\mathrm{X} \perp$ EverythingElse \| $\mathrm{MB}(\mathrm{X})$
- $I_{\text {loc }}(G)=$ set of all local independences
- G is called an I-map of distribution P if $I_{\text {loc }}(G) \subseteq I(P)$

Factorization Theorem for Markov Nets " $>$ "

True distribution P
can be represented exactly as a Markov net (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i} \phi_{i}\left(\mathbf{C}_{i}\right)
$$

$$
\mathrm{I}_{\mathrm{loc}}(\mathrm{G}) \subseteq \mathrm{I}(\mathrm{P})
$$

G is an I-map of P (independence map)

Factorization Theorem for Markov Nets " <-"

True distribution P

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

can be represented exactly as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

G is an I-map of $\mathrm{P} \quad$ Not treei.e., P can be represented as (independence map)
a Markov net (G,P)

Counterexample

- G an I-map for P does not imply that P factorizes
- Binary variables X_{1}, \ldots, X_{4}.
- Only positive states
($0,0,0,0$), ($1,0,0,0$), ($1,1,0,0$), ($1,1,1,0$)
each happens $(0,0,0,1),(0,0,1,1),(0,1,1,1),(1,1,1, \underline{1})$ with poo $\frac{1}{8}$

G is $1-\operatorname{map}$ for P

$$
x_{1} \perp x_{3} \mid x_{2}, x_{4}
$$

$E_{g} ; \quad X_{2}=1, K_{4}=1$

But to represent P_{1} need fall connected graph

Factorization Theorem for Markov Nets " - " Hammersley-Clifford Theorem

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

G is an I-map of P (independence map) and $P>0$

True distribution P can be represented exactly as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

i.e., P can be represented as
a Markov net (G,P)

Global independencies

- A trail $X-X_{1}-\ldots-X_{m}-Y$ is called active for evidence E, if none of $X_{1}, \ldots, X_{m} \in \mathbf{E}$
- Variables X and Y are called separated by E if there is no active trail for E connecting X, Y Write $\operatorname{sep}(X, Y \mid E)$
- $I(G)=\{X \perp Y \mid E: \operatorname{sep}(X, Y \mid E)\}$

Soundness of separation

- Know: For positive distributions $\mathrm{P}>0$

$$
I_{\mathrm{Ioc}}(G) \subseteq I(P) \Leftrightarrow P \text { factorizes over } G
$$

- Theorem: Soundness of separation

For positive distributions $\mathrm{P}>0$

$$
I_{\mathrm{Ioc}}(G) \subseteq I(P) \Leftrightarrow I(G) \subseteq I(P)
$$

- Hence, separation captures only true independences
- How about $\mathrm{I}(\mathrm{G})=\mathrm{I}(\mathrm{P})$?

Completeness of separation

Theorem: Completeness of separation

$$
I(G)=I(P)
$$

for "almost all" distributions P that factorize over G
"almost all": Except for of potential parameterizations of measure 0 (assuming no finite set have positive measure)

Independences in Markov Nets?

- In Bayes Nets (G,P)
- Local Markov Assumption: $\mathrm{X} \perp$ NonDesc(X) | Pa_{x}
- G is I-map for distribution P if Local Markov Assumption holds
- Factorization Thm: P factorizes over G \Leftrightarrow G is an I-map
- Global independences: d-separation
- Completeness and soundness of d-separation
- How about Markov Nets?
- Local Markov Assumption: $X \perp$ EverythingElse \| $\mathrm{MB}(X)$
- Factorization Thm: For positive P, P factorizes $\Leftrightarrow G$ is an I-map
- Global independences: separation
- For positive P: separation is complete and sound
- How about minimal I-maps and P-maps??

Minimal I-maps

- For BNs: Minimal I-map not unique

- For MNs: For positive P, minimal I-map is unique!!

P-maps

- Do P-maps always exist?
- For BN: no

- How about Markov Nets?

does not have MN P-map!

Exact inference in MNs

- Variable elimination and junction tree inference work exactly the same way!
- Need to construct junction trees by obtaining chordal graph through triangulation

Pairwise MNs

- A pairwise MN is a MN where all factors are defined over single variables or pairs of variables
- Can reduce any MN to pairwise MN!

Tasks

- Read Koller \& Friedman Chapters 10 and 4.1-4.5

