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Announcements

® Homework 2 due next Wednesday (Nov 4) in class
® Start early!!!

® Project milestones due Monday (Nov 9)
® 4 pages of writeup, NIPS format
® http://nips.cc/Paperinformation/StyleFiles

Best project award!!



Answering multiple queries
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Reusing computation
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* Will learn about algorithm for efficiently computing
all marginals P(X. | E=e) given fixed evidence E=e

® Need appropriate data structure for storing the
computation

=» Junction trees



Junction trees

A junction tree for a
collection of factors:

® A tree, where each node
is a cluster of variables

® Every factor contained
in some cluster C,

¢ Running intersection
property: If X € Ci and
Xe C, and C is on the
path between C; and C,
then Xe C




VE constructs a junction tree
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® One clique C, for each factor f, created in VE
® C; connected to G, if f; used to generate f;

® Every factor used only once = Tree

¢ Theorem: resulting tree satisfies RIP



Constructing JT from chordal graph
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Junction trees and independence

Theorem:

@ Suppose
® Tis ajunction tree for graph G and factors F
* Consider edge C; — C; with separator S; =C n c,

® Variables X and Y on opposite sites of
separator

<« *ThenX LY|[S;;

® Furthermore, I(T) C I(G)

e8¢



VE as message passing
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VE for computing X

® Pick root (any clique containing X))

® Don’t eliminate, only send messages
recursively from leaves to root

¢ Multiply incoming messages with clique potential
¢ Marginalize variables not in separator

* Raot “ready” when received all messages

10



Correctness of message passing

¢ Theorem: When root ready (received all messages),
all variables in root have correct potentials
® Follows from correctness of VE

® So far, no gain in efficiency ®

11



Does the choice of root affect messages?
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Shenoy-Shafer algorithm

® Cligue i ready if received
@ messages from all neighbors bt |

® Leaves always ready

¢ While there exists a message
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Theorem: At convergence,
every cliqgue has correct beliefs
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Inference using VE

¢ Want to incorporate evidence E=e

* Multiply all cliques containing evidence variables with
indicator potential 1,
| € a=T

IM,[MQS o 1 azF

@ Perform variable elimination
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Summary so far

@ Junction trees represent distribution
® Constructed using elimination order
® Make complexity of inference explicitly visible

¢ Can implement variable elimination on junction trees
to compute correct beliefs on all nodes

o Now:

¢ Belief propagation — an important alternative to VE on
junction trees.

* Will later generalize to approximate inference!

* Key difference: Messages obtained by division rather than
multiplication
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Message passing by factor division

@ Variable elimination:
s Message - Belief 1:CD
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Cligue and separator potentials
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Lauritzen-Spiegelhalter algorithm (a.k.a. Belief Propagation)

® Initialize separator potentials y;;

® One per edge, initialized to 1
@ shee lad msg  acos ‘J?C c’-*}'
// ‘\\\\/ ¢ Messages 4=
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Correctness of Belief propagation

@ Complexity linear in #cliques

@ Theorem:

At convergence, every clique has correct beliefs

(when using correct message order, i.e., leaves to root
and back)

=>» Corollary:
Junction tree is calibrated (cliques agree on separator)
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Comparison of VE and BP messages

@ Variable elimination o Tl“/o)é’ |
3
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Understanding BP

@ Junction tree potential

T () = Tl
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@ Junction tree invariant

1Ty 00y = P(¥)

¢ Theorem: BP maintains Junction tree invariant

=>» BP reparametrizes clique and separator potentials
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Advantages and disadvantages of junction tree inference

¢ Advantages
® Can answer multiple queries (for same evidence) efficiently
® Can perform incremental updates

¢ Disadvantages
® No factors are “deleted”
® Can’t prune away unnecessary variables
® Slower for a single query
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Summary so far

@ Bayesian Networks
® Representation
® Learning (MLE / Bayesian) with fully observed data
® Exact Inference

@ Next
¢ Undirected models
® Approximate inference
® Hidden variables
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Representing the world using BNs

True distribution P’ e e
with cond. ind. I(P") Bayes net (G,P)
with I(P)

¢ Want to make sure that I(P! C I(P’)
® |deally: I(P) = I(P’)
¢ Want BN that exactly captures independencies in P’!
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® Minimal I-maps are easy to find, but can contain
many unnecessary dependencies.

@ A BN structure G is called P-map (perfect map) for

distribution P if I{G) = I(P)
® Does every distribution P have a P-map?
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Existence of perfect maps
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¢ Will have undirected model as P-map
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Undirected Parameterization
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Markov Networks

(a.k.a., Markov Random Field, Gibbs Distribution, ...)

® A Markov Network consists of
® An undirected graph, where each node represents a RV

® A collection of factors defined over cliques in the graph

® Joint probability
Piey = \ Y. (C,)

P
® A distribution factorizes over undirected graph G if

3 fackes Y -- %y owcﬁ'?«—m o & st
PO = 3 TT % (¢
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Example MN: Image denoising

Markov Network V.
Ca (¥, 95)

X:: noisy pixels
Y;: “true” pixels 30
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Computing Joint Probabilities

® Computing joint probabilities in BNs
P(X,.. X) = TP [Pa))
P, 1K)
actushy amp. TX,, Kt}

¢ Computing joint probabilities in Markov Nets
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Independences in Markov Nets?

® |n Bayes Nets (G,P)
® Local Markov Assumption: X L NonDesc(X) | Pa,

® G is I-map for distribution P if Local Markov Assumption holds

® Factorization Thm: P factorizes over G <~ G is an I-map
® Global independences: d-separation
® Completeness and soundness of d-separation

¢ How about Markov Nets?

® What’s the analog of the Local Markov Assumption?

® |s there a factorization theorem for Markov Nets?
¢ What replaces d-separation?
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Local Markov Assumption for MN

® The Markov Blanket MB(X)
of a node X is the set of
neighbors of X

® Local Markov Assumption:
X L EverythingElse | MB(X)

? |..(G) = set of all local
independences

® G is called an I-map of
distribution P if I _.(G) C I(P)
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Factorization Theorem for Markov Nets “=»”

True distribution P
can be represented exactly as

a Markov net (G,P) |::> loc(G) € I(P)
, %
P(X1,.0Xn) = H(,bi(ci)

3K 1 NEgy

Gisan l-map of P
(independence map)
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Factorization Theorem for Markov Nets “€=”

True distribution P

ETK | NG

S can be represented exactly as
loc(G) C I(P) P(X1, .., X,) = [[ P(X; | Pay,)

Gisanl-map of P A’dJ'Wi.e., P can be reforesented as
(independence map) ‘ M a Markov net (G,P)
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Counterexample

® G an I-map for P does not imply that P factorizes

® Binary variables X,,...,X,.

® Only positive states
(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0) &= Lo
(0,0,0,1), (0,0,1,1), (0,1,1,1), (1,1,1,1) " F* 5
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Factorization Theorem for Markov Nets “
Hammersley-Clifford Theorem

Hunts Point

eeeeeeeeee

True distribution P
S can be represented exactly as

(@) SIP) =0 pix,..x,) = [[P(X. | Pax)

Gisanl-map of P i.e., P can be represented as

(independence map) a Markov net (G,P)
and P>0
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Global independencies
® Atrail X—X;—...—X_—VYis

*m
called active for evidence E, if

none of X,,...,. X €E

@ Variables X and Y are called
separated by E if there is no
active trail for E connecting X, Y
Write sep(X,Y | E)

® [(G) ={XLY | E: sep(X,Y|E)}
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Soundness of separation

® Know: For positive distributions P>0
(G) C I(P) < P factorizes over G

IIoc

¢ Theorem: Soundness of separation
For positive distributions P>0

(G) € 1I(P) < I(G) € I(P)

IIoc

® Hence, separation captures only true independences

¢ How about I(G) = I(P)?
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Completeness of separation

Theorem: Completeness of separation

(G) = I(P)

I”

for “almost all” distributions P that factorize over G

“almost all”: Except for of potential parameterizations
of measure 0 (assuming no finite set have positive
measure)
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Independences in Markov Nets?

® |In Bayes Nets (G,P)
® Local Markov Assumption: X L. NonDesc(X) | Pa,

® G is I-map for distribution P if Local Markov Assumption holds
® Factorization Thm: P factorizes over G <~ G is an I-map

® Global independences: d-separation

® Completeness and soundness of d-separation

¢ How about Markov Nets?
® Local Markov Assumption: X _L EverythingElse | MB(X)
® Factorization Thm: For positive P, P factorizes <~ G is an I-map
* Global independences: separation
® For positive P: separation is complete and sound

¢ How about minimal I-maps and P-maps??
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Minimal I-maps

@ For BNs: Minimal I-map not unique

®

® For MNs: For positive P, minimal I-map is unique!!
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® Do P-maps always exist?

@ For BNs: no 5
é/

¢ How about Markov Nets?

c[o&s M‘(‘ Lwtre/
MN  P-map !

o2 0
\V
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Exact inference in MNs

® Variable elimination and junction tree inference work
exactly the same way!

® Need to construct junction trees by obtaining chordal graph
through triangulation
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@ A pairwise MN is a MN where all factors are defined
over single variables or pairs of variables

® Can reduce any MN to pairwise MN!
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¢ Read Koller & Friedman Chapters 10 and 4.1-4.5
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