
Probabilistic

Graphical Models

Lecture 9 – Undirected Models

CS/CNS/EE 155

Andreas Krause



2

Announcements
Homework 2 due next Wednesday (Nov 4) in class

Start early!!!

Project milestones due Monday (Nov 9)

4 pages of writeup, NIPS format

http://nips.cc/PaperInformation/StyleFiles

Best project award!!
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Answering multiple queries

X1 X2 X3 X4 X5
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Reusing computation

X1 X2 X3 X4 X5
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Next
Will learn about algorithm for efficiently computing 

all marginals P(Xi | E=e) given fixed evidence E=e

Need appropriate data structure for storing the 

computation

� Junction trees



6

Junction trees

A junction tree for a 

collection of factors:

A tree, where each node 

is a cluster of variables

Every factor contained 

in some cluster Ci

Running intersection 

property: If X ∈ C
i
and 

X∈ Cj, and Cm is on the 

path between Ci and Cj, 

then X∈ Cm
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VE constructs a junction tree

One clique Ci for each factor fi created in VE

Ci connected to Cj if fi used to generate fj

Every factor used only once � Tree

Theorem: resulting tree satisfies RIP

X1 X2 X3 X4 X5
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Constructing JT from chordal graph
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Junction trees and independence

Theorem: 

Suppose 

T is a junction tree for graph G and factors F

Consider edge Ci – Cj with separator Si,j

Variables X and Y on opposite sites of 

separator

Then X⊥ Y | Si,j

Furthermore, I(T) ⊆ I(G)

CD

DIG

GIS

GJSL

HGJ

JSL



10

VE as message passing

VE for computing Xi

Pick root (any clique containing Xi)

Don’t eliminate, only send messages 

recursively from leaves to root

Multiply incoming messages with clique potential

Marginalize variables not in separator

Root “ready” when received all messages
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Correctness of message passing

Theorem: When root ready (received all messages), 

all variables in root have correct potentials

Follows from correctness of VE

So far, no gain in efficiency �

CD DIG GIS GJSL HGJ
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Does the choice of root affect messages?

1: CD 2: DIG 3: GIS 4: GJSL 5: HGJ

1: CD 2: DIG 3: GIS 4: GJSL 5: HGJ
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Shenoy-Shafer algorithm
Clique i ready if received 

messages from all neighbors

Leaves always ready

While there exists a message 

δi→j ready to transmit send 

message

Complexity?

Theorem: At convergence, 

every clique has correct beliefs

C1

C2 C4

C3 C5 C6
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Inference using VE
Want to incorporate evidence E=e

Multiply all cliques containing evidence variables with 

indicator potential 1e

Perform variable elimination
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Summary so far
Junction trees represent distribution

Constructed using elimination order

Make complexity of inference explicitly visible

Can implement variable elimination on junction trees 
to compute correct beliefs on all nodes

Now:  

Belief propagation – an important alternative to VE on 
junction trees.  

Will later generalize to approximate inference!

Key difference:  Messages obtained by division rather than 
multiplication
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Message passing by factor division

Variable elimination:

Message � Belief

Factor division:

Belief � Message

1: CD

2: DIG

3: GIS
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Factor division
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Clique and separator potentials

1: AB 2: BC
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Lauritzen-Spiegelhalter algorithm (a.k.a. Belief Propagation)

Initialize separator potentials µij
One per edge, initialized to 1

Messages

C1

C2 C4

C3 C5 C6
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Correctness of Belief propagation

Complexity linear in #cliques

Theorem: 

At convergence, every clique has correct beliefs

(when using correct message order, i.e., leaves to root 

and back)

� Corollary: 

Junction tree is calibrated (cliques agree on separator)
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Comparison of VE and BP messages

Variable elimination

Belief propagation

C1

C2

C4C3

C1

C2

C4C3
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Understanding BP
Junction tree potential

Junction tree invariant

Theorem: BP maintains Junction tree invariant

� BP reparametrizes clique and separator potentials
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Advantages and disadvantages of junction tree inference

Advantages

Can answer multiple queries (for same evidence) efficiently

Can perform incremental updates

Disadvantages

No factors are “deleted”

Can’t prune away unnecessary variables

Slower for a single query
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Summary so far
Bayesian Networks

Representation

Learning (MLE / Bayesian) with fully observed data

Exact Inference

Next

Undirected models

Approximate inference

Hidden variables



25

Representing the world using BNs

Want to make sure that  I(P) ⊆ I(P’)

Ideally: I(P) = I(P’)

Want BN that exactly captures independencies in P’!
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Perfect maps
Minimal I-maps are easy to find, but can contain 

many unnecessary dependencies.

A BN structure G is called P-map (perfect map) for 

distribution P if I(G) = I(P)

Does every distribution P have a P-map?
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Existence of perfect maps

Will have undirected model as P-map
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Undirected Parameterization

X1

X2 X3

X4
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Markov Networks
(a.k.a., Markov Random Field, Gibbs Distribution, …)

A Markov Network consists of

An undirected graph, where each node represents a RV

A collection of factors defined over cliques in the graph

Joint probability

A distribution factorizes over undirected graph G if

X1

X2 X4

X5

X7 X8

X6X3

X9
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Example MN: Image denoising
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Xi: noisy pixels

Yi: “true” pixels
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Computing Joint Probabilities
Computing joint probabilities in BNs

Computing joint probabilities in Markov Nets
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Independences in Markov Nets?

In Bayes Nets (G,P)

Local Markov Assumption: X ⊥ NonDesc(X) | PaX

G is I-map for distribution P if Local Markov Assumption holds

Factorization Thm: P factorizes over G � G is an I-map

Global independences: d-separation

Completeness and soundness of d-separation

How about Markov Nets?

What’s the analog of the Local Markov Assumption?

Is there a factorization theorem for Markov Nets?

What replaces d-separation?
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Local Markov Assumption for MN

The Markov Blanket MB(X)

of a node X is the set of 

neighbors of X

Local Markov Assumption:

X ⊥ EverythingElse | MB(X)

Iloc(G) = set of all local 

independences 

G is called an I-map of 

distribution P if Iloc(G) ⊆ I(P)

X1

X2 X4

X5

X7 X8

X6X3

X9
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Factorization Theorem for Markov Nets “�”
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Factorization Theorem for Markov Nets “”
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Counterexample
G an I-map for P  does not imply that P factorizes

Binary variables X1,…,X4.  

Only positive states 

(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0) 

(0,0,0,1), (0,0,1,1), (0,1,1,1), (1,1,1,1) 
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Factorization Theorem for Markov Nets “”

Hammersley-Clifford Theorem
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Global independencies
A trail X—X1—…—Xm—Y is 

called active for evidence E, if 

none of X1,…,Xm ∈ E

Variables X and Y are called 

separated by E if there is no 

active trail for E connecting X, Y

Write sep(X,Y | E)

I(G) = {X | Y | E: sep(X,Y|E)}

X1

X2 X4

X5

X7 X8

X6X3

X9
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Soundness of separation
Know:  For positive distributions P>0

Iloc(G) ⊆ I(P) � P factorizes over G

Theorem:  Soundness of separation

For positive distributions P>0

Iloc(G) ⊆ I(P) � I(G) ⊆ I(P)

Hence, separation captures only true independences

How about I(G) = I(P)?
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Completeness of separation
Theorem:  Completeness of separation

I(G) = I(P) 

for “almost all” distributions P that factorize over G

“almost all”: Except for of potential parameterizations 

of measure 0 (assuming no finite set have positive 

measure)
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Independences in Markov Nets?
In Bayes Nets (G,P)

Local Markov Assumption: X ⊥ NonDesc(X) | PaX

G is I-map for distribution P if Local Markov Assumption holds

Factorization Thm: P factorizes over G � G is an I-map

Global independences: d-separation

Completeness and soundness of d-separation

How about Markov Nets?

Local Markov Assumption: X ⊥ EverythingElse | MB(X)

Factorization Thm: For positive P, P factorizes � G is an I-map

Global independences: separation

For positive P: separation is complete and sound

How about minimal I-maps and P-maps??
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Minimal I-maps
For BNs: Minimal I-map not unique

For MNs: For positive P, minimal I-map is unique!!

E B

A

J M
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E B
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P-maps
Do P-maps always exist?

For BNs: no

How about Markov Nets?
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Exact inference in MNs
Variable elimination and junction tree inference work 

exactly the same way!

Need to construct junction trees by obtaining chordal graph 

through triangulation
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Pairwise MNs
A pairwise MN is a MN where all factors are defined 

over single variables or pairs of variables

Can reduce any MN to pairwise MN!

X1

X2 X4

X5
X3
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Tasks
Read Koller & Friedman Chapters 10 and 4.1-4.5


