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Announcements
Homework 2 due next Wednesday (Nov 4) in class

Start early!!!

Project milestones due Monday (Nov 9)

4 pages of writeup, NIPS format

http://nips.cc/PaperInformation/StyleFiles

Best project award!!
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Key questions
How do we specify distributions that satisfy particular 

independence properties?

� Representation

How can we identify independence properties 

present in data?

� Learning

How can we exploit independence properties for 

efficient computation?

� Inference
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Typical queries: Conditional distribution

Compute distribution of some 

variables given values for othersE B

A

J M
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Typical queries: Maxizimization
MPE (Most probable explanation):

Given values for some vars, 

compute most likely assignment to 

all remaining vars

MAP (Maximum a posteriori):

Compute most likely assignment to 

some variables

E B

A

J M
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Hardness of inference for general BNs

Computing conditional distributions:

Exact solution: #P-complete

Approximate solution:

Maximization:

MPE: NP-complete

MAP: NPPP-complete

Inference in general BNs is really hard �

Is all hope lost?
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Inference
Can exploit structure (conditional independence) to 

efficiently perform exact inference in many practical 

situations

For BNs where exact inference is not possible, can use 

algorithms for approximate inference (later this term)



8

Variable elimination algorithm
Given BN and Query P(X | E=e)

Remove irrelevant variables for {X,e}

Choose an ordering of X1,…,Xn

Set up initial factors: fi = P(Xi | Pai)

For i =1:n, Xi ∉ {X,E}

Collect all factors f that include Xi

Generate new factor by marginalizing out Xi

Add g to set of factors

Renormalize P(x,e) to get P(x | e)
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Variable elimination for polytrees
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Complexity of variable elimination

Tree graphical models

Using correct elimination order, factor sizes do not increase!

Inference in linear time!!

General graphical models

Ultimately NP-hard.. 

Need to understand what happens if there are loops
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Variable elimination with loops

R

A

J M

L
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Elimination as graph transformation: Moralization

Coherence

Difficulty Intelligence

Grade SAT

Letter

Job

Happy
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Elimination: Filling edges

Coherence

Difficulty Intelligence

Grade SAT

Letter

Job

Happy
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Impact of elimination order

Different elim. order induce different graphs!

Coherence

Difficulty Intelligence

Grade SAT

Letter

Job

Happy

Coherence

Difficulty Intelligence

Grade SAT

Letter

Job

Happy

{G,C,D,S,I,L,H,J}{C,D,S,I,L,H,J,G}
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Induced graph and VE complexity

Theorem:

All factors arising in VE are defined over 

cliques (fully connected subgraphs) of the 

induced graph

All maximal cliques of induced graph arise 

as factors in VE

Treewidth for ordering = Size of largest 

clique of induced graph -1

Treewidth of a graph = minimal 

treewidth under optimal ordering

VE exponential in treewidth!

Coherence

Difficulty Intelligence

Grade SAT

Letter

Job

Happy
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Compact representation � small treewidth?
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Finding the optimal elimination order
Theorem:  Deciding whether there exists an elimination 
order with induced with at most K is NP-hard

Proof by reduction from MAX-CLIQUE

In fact, can find elimination order in time exponential in 
treewidth

Finding optimal ordering as hard as inference…

For which graphs can we find optimal elimination 
order?
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Finding optimal elimination order

For trees can find optimal ordering (saw before)

A graph is called chordal if every cycle of length \geq 4 

has a chord (an edge between some pair of non-

consecutive nodes)

Every tree is chordal!

Can find optimal elimination ordering for chordal graphs
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Summary so far
Variable elimination complexity exponential in 
induced width for elimination ordering

Finding optimal ordering is NP-hard

Many good heuristics

Exact for trees, chordal graphs

Ultimately, inference is NP-hard

Only difference between cond. prob. queries and 
MPE is ∑ vs. max

Variable elimination building block for many exact 
and approximate inference techniques
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Answering multiple queries

X1 X2 X3 X4 X5
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Reusing computation

X1 X2 X3 X4 X5
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Next
Will learn about algorithm for efficiently computing 

all marginals P(Xi | E=e) given fixed evidence E=e

Need appropriate data structure for storing the 

computation

� Junction trees
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Junction trees

A junction tree for a 

collection of factors:

A tree, where each node 

is a cluster of variables

Every factor contained 

in some cluster Ci

Running intersection 

property: If X ∈ C
i
and 

X∈ Cj, and Cm is on the 

path between Ci and Cj, 

then X∈ Cm

C

D I

G S

L

J

H

CD

DIG

GIS

GJSL

HGJ

JSL



24

VE constructs a junction tree

One clique Ci for each factor fi created in VE

Ci connected to Cj if fi used to generate fj

Every factor used only once � Tree

Theorem: resulting tree satisfies RIP

X1 X2 X3 X4 X5
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Example: JT from VE

{C,D,I,H,G,S,L}C

D I

G S

L

J

H
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Constructing JT from chordal graph

C

D I

G S

L

J

H
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Junction trees and independence

Theorem: 

Suppose 

T is a junction tree for graph G and factors F

Consider edge Ci – Cj with separator Si,j

Variables X and Y on opposite sites of 

separator

Then X⊥ Y | Si,j

Furthermore, I(T) ⊆ I(G)

CD

DIG

GIS

GJSL

HGJ

JSL
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Variable elimination in junction trees

Associate each CPTs with a clique

Potential πC of clique C is product 

of assigned CPTs

C

D I

G S

L

J
H

CD DIG GIS GJSL HGJ
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VE as message passing

VE for computing Xi

Pick root (any clique containing Xi)

Don’t eliminate, only send messages 

recursively from leaves to root

Multiply incoming messages with clique potential

Marginalize variables not in separator

Root “ready” when received all messages

C

D I

G S

L

J
H

CD DIG GIS GJSL HGJ
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Correctness of message passing

Theorem: When root ready (received all messages), 

all variables in root have correct potentials

Follows from correctness of VE

So far, no gain in efficiency �

CD DIG GIS GJSL HGJ
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Does the choice of root affect messages?

1: CD 2: DIG 3: GIS 4: GJSL 5: HGJ

1: CD 2: DIG 3: GIS 4: GJSL 5: HGJ
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Shenoy-Shafer algorithm
Clique i ready if received 

messages from all neighbors

Leaves always ready

While there exists a message 

δi→j ready to transmit send 

message

Complexity?

Theorem: At convergence, 

every clique has correct beliefs

C1

C2 C4

C3 C5 C6
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Inference using VE
Want to incorporate evidence E=e

Multiply all cliques containing evidence variables with 

indicator potential 1e

Perform variable elimination
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Summary so far
Junction trees represent distribution

Constructed using elimination order

Make complexity of inference explicitly visible

Can implement variable elimination on junction trees 
to compute correct beliefs on all nodes

Now:  

Belief propagation – an important alternative to VE on 
junction trees.  

Will later generalize to approximate inference!

Key difference:  Messages obtained by division rather than 
multiplication


