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Announcements

® Homework 2 due next Wednesday (Nov 4) in class
® Start early!!!

® Project milestones due Monday (Nov 9)
® 4 pages of writeup, NIPS format
® http://nips.cc/Paperinformation/StyleFiles

Best project award!!



¢ How do we specify distributions that satisfy particular
independence properties?

=» Representation

¢ How can we identify independence properties
present in data?

=» Learning

® How can we exploit independence properties for
efficient computation?

=>» Inference




Typical queries: Conditional distribution

® Compute distribution of some

@ variables given values for others
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Typical queries: Maxizimization
® MPE (Most probable explanation):

@ Given values for some vars,

compute most likely assignment to

all remaining vars
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Hardness of inference for general BNs

® Computing conditional distributions:
® Exact solution: #P-complete

® Approximate solution: /P —lord ot <
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¢ Maximization:
® MPE: NP-complete

* MAP: NPPP-complete
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® Inference in general BNs is really hard ®
¢ |s all hope lost?



Inference

® Can exploit structure (conditional independence) to
efficiently perform exact inference in many practical

situations

® For BNs where exact inference is not possible, can use
algorithms for approximate inference (later this term)



Variable elimination algorithm
¢ Given BN and Query P(X | E=e

® Remove irrelevant variables for {X,e}
® Choose an ordering of X,...,X_
® Set up initial factors: f, = P(X. | Pa;)
® Fori=1:n, X, & {X,E} -
¢ Collect all factors f that include X,

¢ Generate new factor by marginalizing out X
g=2_11+
® Add g to set of factors
® Renormalize P(x,e) to get P(x | e)



Variable elimination for polytrees
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Complexity of variable elimination
® Tree graphical models

® Using correct elimination order, factor sizes do not increase!
® |[nference in linear time!!

e

® General graphical models
¢ Ultimately NP-hard..
® Need to understand what happens if there are loops
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Variable elimination with loops
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Elimination as graph transformation: Moralization
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Elimination: Filling edges
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Impact of elimination order

« {CD,S,,LH,J,G} G
Coherence

{G,C,D,S,I,LH,J}
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» Different elim. order induce different graphs! Tre B
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Induced graph and VE complexity
® Theorem:

¢ All factors arising in VE are defined over
cligues (fully connected subgraphs) of the
induced graph

¢ All maximal cliques of induced graph arise
as factors in VE

® Treewidth for ordering = Size of largest
cliqgue of induced graph -1

® Treewidth of a graph = minimal
treewidth under optimal ordering

® VE exponential in treewidth!
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Compact representation =2 small treewidth?
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Finding the optimal elimination order

* Theorem: Deciding whether there exists an elimination
order with induced with at most K is NP-hard
® Proof by reduction from MAX-CLIQUE

® |n fact, can find elimination order in time exponential in
treewidth

® Finding optimal ordering as hard as inference...

® For which graphs can we find optimal elimination
order?
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Fmdmg optimal elimination order

° Fort ees can find optimal ordering (saw before)

2
® A graph is called chordal if every cycle of length\gegq 4

has a chord (an edge between some pair of non-
consecutive nodes)

_—
* Every tree is chord@\ O O
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¢ Can find optimal elimination ordering for chordal graphs
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Summary so far

@ Variable elimination complexity exponential in
induced width for elimination ordering

® Finding optimal ordering is NP-hard

® Many good heuristics
® Exact for trees, chordal graphs

¢ Ultimately, inference is NP-hard

¢ Only difference between cond. prob. queries and
MPE is 2. vs. max

® Variable elimination building block for many exact
and approximate inference techniques
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Answering multiple queries
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Reusing computation
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* Will learn about algorithm for efficiently computing
all marginals P(X. | E=e) given fixed evidence E=e

® Need appropriate data structure for storing the
computation

=» Junction trees

22



Junction trees

A junction tree for a
collection of factors:

® A tree, where each node
is a cluster of variables

® Every factor contained
in some cluster C,

¢ Running intersection
property: If X € Ci and
Xe C, and C is on the
path between C; and C,
then Xe C
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VE constructs a junction tree
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® One clique C, for each factor f, created in VE
® C; connected to G, if f; used to generate f;
® Every factor used only once = Tree

¢ Theorem: resulting tree satisfies RIP
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Example: JT from VE

. {GDLH,G,S,
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Constructing JT from chordal graph
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Junction trees and independence

Theorem:

@ Suppose
® Tis ajunction tree for graph G and factors F
* Consider edge C; — C; with separator S; =C n c,

® Variables X and Y on opposite sites of
separator

<« *ThenX LY|[S;;

® Furthermore, I(T) C I(G)

e8¢
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Variable elimination in junction trees

P(C) R05E) Pé&(lb) ~

TL () = PV T~
ECI.M C: Cavn(v{"é new F“'C“W’ 2’(“)) < ? U}(,(C,b)

> b T G~ — @D

® Associate each CPTs with a clique

® Potential 7 of clique Cis product
of assigned CPTs
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VE as message passing
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VE for computing X

® Pick root (any clique containing X))

® Don’t eliminate, only send messages
recursively from leaves to root

¢ Multiply incoming messages with clique potential
¢ Marginalize variables not in separator

* Raot “ready” when received all messages
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Correctness of message passing

¢ Theorem: When root ready (received all messages),
all variables in root have correct potentials
® Follows from correctness of VE

® So far, no gain in efficiency ®
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Does the choice of root affect messages?
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Shenoy-Shafer algorithm

® Cligue i ready if received
@ messages from all neighbors bt |

® Leaves always ready

¢ While there exists a message

\\ 0, . ready to transmit send
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Theorem: At convergence,
every cliqgue has correct beliefs
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Inference using VE

¢ Want to incorporate evidence E=e

* Multiply all cliques containing evidence variables with
indicator potential 1,
| € a=T

IM,[MQS o 1 azF

@ Perform variable elimination
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Summary so far

@ Junction trees represent distribution
® Constructed using elimination order
® Make complexity of inference explicitly visible

¢ Can implement variable elimination on junction trees
to compute correct beliefs on all nodes

o Now:

¢ Belief propagation — an important alternative to VE on
junction trees.

* Will later generalize to approximate inference!

* Key difference: Messages obtained by division rather than
multiplication
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