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Announcements

¢ Homework 1 due today in class

* Will get back to you soon with feedback on project
proposals.



¢ How do we specify distributions that satisfy particular
independence properties?

=» Representation

¢ How can we identify independence properties
present in data?

=» Learning

® How can we exploit independence properties for
efficient computation?

=>» Inference



Bayesian network inference

® Compact representation of distributions over large
number of variables

® (Often) allows efficient exact inference (computing
marginals, etc.)
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Typical queries: Conditional distribution

® Compute distribution of some

@ variables given values for others
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Typical queries: Maxizimization
® MPE (Most probable explanation):

@ Given values for some vars,

compute most likely assignment to

all remaining vars
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Hardness of inference for general BNs

® Computing conditional distributions:
® Exact solution: #P-complete

® Approximate solution: /P —lord ot <
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¢ Maximization:
® MPE: NP-complete

* MAP: NPPP-complete
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® Inference in general BNs is really hard ®
¢ |s all hope lost?



Inference

® Can exploit structure (conditional independence) to
efficiently perform exact inference in many practical

situations

® For BNs where exact inference is not possible, can use
algorithms for approximate inference (later this term)



Potential for savings: Variable elimination!
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Intermediate solutions are distributions on fewer variables!
9



Variable elimination algorithm
¢ Given BN and Query P(X | E=e

® Remove irrelevant variables for {X,e}
® Choose an ordering of X,...,X_
® Set up initial factors: f, = P(X. | Pa;)
® Fori=1:n, X, & {X,E} -
¢ Collect all factors f that include X,

¢ Generate new factor by marginalizing out X
g=2_11+
® Add g to set of factors
® Renormalize P(x,e) to get P(x | e)
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Multiplying factors
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Marginalizing factors
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Does the order matter?
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Variable elimination for polytrees
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Complexity of variable elimination
® Tree graphical models

® Using correct elimination order, factor sizes do not increase!
® |[nference in linear time!!

e

® General graphical models
¢ Ultimately NP-hard..
® Need to understand what happens if there are loops
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Variable elimination with loops
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Elimination as graph transformation: Moralization
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Elimination: Filling edges
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Impact of elimination order
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» Different elim. order induce different graphs! Tre B
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Induced graph and VE complexity
® Theorem:

¢ All factors arising in VE are defined over
cligues (fully connected subgraphs) of the
induced graph

¢ All maximal cliques of induced graph arise
as factors in VE

® Treewidth for ordering = Size of largest
cliqgue of induced graph -1

® Treewidth of a graph = minimal
treewidth under optimal ordering

® VE exponential in treewidth!
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Compact representation =2 small treewidth?
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Finding the optimal elimination order

* Theorem: Deciding whether there exists an elimination
order with induced with at most K is NP-hard
® Proof by reduction from MAX-CLIQUE

® |n fact, can find elimination order in time exponential in
treewidth

® Finding optimal ordering as hard as inference...

® For which graphs can we find optimal elimination
order?
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Fmdmg optimal elimination order

° Fort ees can find optimal ordering (saw before)

2
® A graph is called chordal if every cycle of length\gegq 4

has a chord (an edge between some pair of non-
consecutive nodes)
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¢ Can find optimal elimination ordering for chordal graphs
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Minimal fill heuristic

® Unmark all nodes

2 Fori=1:n

® Find unmarked node X such that
adding X adds fewest additional
edges

2 ® Set X as i-th var. in ordering
® Fill in edges added by eliminating X
® Mark X

3 ¢ Often very effective!

¢ |n fact, finds optimal order for
chordal graphs!

® May want to weigh by factor size
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Maxizimization queries

® MPE (Most probable explanation):

@ Given values for some vars,

compute most likely assignment to

e all remaining vars
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Variable elimination for MPE
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Recovering the MPE
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Variable elimination for MPE: Forward pass

® Given BN and MLE query max P(x_1,...,x_n | E=e)
® Choose an ordering of X,...,X_
® Set up initial factors: f, = P(X. | Pa,)
® Fori=1:n, X, ¢ {X,E}
¢ Collect all factors f that include X,

* Generate new factor by maximizing over X
— max :
g=max][f,
J

® Add g to set of factors
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Variable elimination for MPE: Backward pass

® Variables x1 ,--X," Will contain MPE

° Forl—nl X. & {XE}
¢ Take factors f,,..,f,, used when eliminating X

® Plug in values x. * into these factors
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Maximizing factors

30



Summary so far

@ Variable elimination complexity exponential in
induced width for elimination ordering

® Finding optimal ordering is NP-hard

® Many good heuristics
® Exact for trees, chordal graphs

¢ Ultimately, inference is NP-hard

¢ Only difference between cond. prob. queries and
MPE is 2. vs. max

® Variable elimination building block for many exact
and approximate inference techniques

31



¢ Homework 2 due in class Wednesday Nov 4
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