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Announcements

® Recitations: Every Tuesday 4-5:30 in 243 Annenberg
¢ Homework 1 due in class Wed Oct 21

® Project proposals due tonight (Monday Oct 19)



Structure learning

¢ Two main classes of approaches:

@ Constraint based

—_— ———
® Search for P-map (if one exists):
® |dentify PDAG

® Turn PDAG into BN (using algorithm in reading)

¢ Key problem: Perform independence tests
* Optimizationhased . @ i ep
® Define scoring function (e.g., likelihood of data)

® Think about structure as parameters
® More common; can solve simple cases exactly



Finding the optimal MLE structure

® Optimal solution for MLE is always the fully
connected graph!!! ®
> Non-compact representation; Overfitting!!

@ Solutions:
® Priors over parameters / structures (later)
® Constraint optimization (e.g., bound #parents)



Bayesian learning

® Make prior assumptions about parameters P(6)

¢ Compute posterior
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Conjugate priors

® Consider parametric families of prior distributions:
* P(0) = 1(0; a)
® o is called “hyperparameters” of prior

® A prior P(0) = f(0; «) is called conjugate for a
likelihood function P(D | 0) if P(6 | D) = f(0; &)
® Posterior has same parametric form
® Hyperparameters are updated based on data D

® Obvious questions (answered later):
* How to choose hyperparameters??
® Why limit ourselves to conjugate priors??



Posterior for Beta prior

@ Beta distribution

P(H) — Beta(@; 7, OéT) —
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B(OéH, OéT)

¢ Likelihood:
P(D|0)=60m1(1—-0)""

@ Posterior:
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Why do priors help avoid overfitting?
P(D|9)= [ P(D|G.60)iP(tg |9

® This Bayesian Score is tricky to analyze. Instead use:

logm

log P(D | G) ~ log P(D | G, 0g)

Dim(G)

® Why??
® Theorem: For Dirichlet priors, and for m—2> oo:

]
log P(D | G) — log P(D | G,05) — —2"

Dim(G) 4+ O(1)
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log

27” Dim(G)

log P(D | G) ~ log P(D | G, 0g)

® This approximation is known as Bayesian Information
Criterion (related to Minimum Description Length)

l0g P(D | G) ~ m Y (T, Pay) — (X)) ~ 5™ Dim()

® Trades goodness-of-fit and structure complexity!
® Decomposes along families (computational efficiency!)
® Independent of hyperparameters! (Why??)



Consistency of BIC

® Suppose true distribution has P-map G*

® A scoring function Score(G ; D) is called consistent, if,
as m = oo and probability = 1 over D:

® G* maximizes the score
® All non-l-equivalent structures have strictly lower score

¢ Theorem: BIC Score is consistent!

® Consistency requires m =2 co. For finite samples,
priors matter!
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Parameter priors

¢ How should we choose priors for discrete CPDs?

® Dirichlet (computational reasons). But how do we
specify hyperparameters??

@ K2 prior:
® FiX o
* P(fy Pax) = Dir(q,...,«)
¢ |s this a good choice?
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¢ Want to ensure “equivalent sample size” m’ is constant

® |dea:
® Define P’(X,...,X,)
For example: P’(X,,...,X.) = II. Uniform(Val(X.))
® Choose equivalent sample size m’

* Set A | pai =m’ P'(x;, pa)
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Score consistency

® A scoring function is called score-consistent, if all
l-equivalent structures have same score

OG-0 O

Gl
G @) 1(#)
oo Comsihveg i |(6) > ((6) = Seoe(6:D) =Seore(G!:p)

® K2 prior is inconsistent!
@ BDe prior is consistent

® |n fact, Bayesian score is consistent <~ BDe prior on
CPTsl!!
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Score decomposability

® Proposition: Suppose we have
¢ Parameter independence

® Parameter modularity: if X has same parents in G, G, then
same prior.

® Structure modularity: P(G) is product over factors defined
over families (e.g.: P(G) = exp(-c|G|))

® Then Score(D : G) decomposes over the graph:
Score(G ; D) = 2. FamScore(X; | Pa;; D)

® |f G’ results from G by modifying a single edge, only
need to recompute the score of the affected families!!
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Bayesian structure search

® Given consistent scoring function Score(G : D), want
to find to find graph G* that maximizes the score

® Finding the optimal structure is NP-hard in most
interesting cases (details in reading). ®

® Can find optimal tree/forest efficiently (Chow-Liu) ©

® Want practical algorithm for learning structure of
more general graphs..
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Local search algorithms

¢ Start with empty graph (better: Chow-Liu tree)
¢ |teratively modify graph by

® Edge addition

® Edge removal

® Edge reversal

¢ Need to guarantee acyclicity (can be checked
efficiently)

® Be careful with lI-equivalence (can search over
equivalence classes directly!)

¢ May want to use simulated annealing to avoid local
maxima
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Efficient local search

Scove (G—‘D\

® |f Score is decomposable, only need to recompute
affected families!
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Alternative: Fixed order search

® Suppose we fix order X,,...,X_ of variables

® Want to find optimal structure s.t. for all X::
Pa, C {X,,....Xi 1}
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Fixed order for d parents

® Fix ordering

® For each variable X

® For each subset A C {X,...X.;}, |[A|<d
compute FamScore(X, | A)

® Set Pa, = argmax, FamScore(X. |A)
@ |f score is decomposable =2 optimal solution!!

® Can find best structure by searching over all orderings!

19



Searching structures vs orderings?

® Ordering search

* Find optimal BN for fixed order

® Space of orderings “much smaller” than space of graphs..

2
* n! orderings vs 2" directed graphs (counting DAGs more complicated)

@ Structure search
¢ Can have arbitrary number of parents
® Cheaper per iteration
® More control over possible graph modifications
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What you need to know

@ Conjugate priors
® Beta / Dirichlet
® Predictions, updating of hyperparameters

¢ Meta-BN encoding parameters as variables

® Choice of hyperparameters
° BDe prior =7 Scaot ConSiplacy

® Decomposability of scores and implications

@ Local search
® On graphs
® On orderings (optimal for fixed order)
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¢ How do we specify distributions that satisfy particular
independence properties?

=» Representation

¢ How can we identify independence properties
present in data?

=» Learning

® How can we exploit independence properties for
efficient computation?

=>» Inference
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Bayesian network inference

® Compact representation of distributions over large
number of variables

® (Often) allows efficient exact inference (computing
marginals, etc.)

HailFinder
56 vars
~ 3 states each

=>~102° terms
> 10.000 years
| on Top
supercomputers
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Typical queries: Conditional distribution

® Compute distribution of some

@ variables given values for others
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Typical queries: Maxizimization
® MPE (Most probable explanation):

@ Given values for some vars,

compute most likely assignment to

all remaining vars
e Goren = Fo MET {nd
@ (e b* o) :mw( P(J-F T, e\b,q)
MPE o AP ® MAP (Maximum a posteriori):
doa'd neces oy Compute most likely assignment to
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Hardness of computing conditional prob.

® Computing P(X=x | E=e) is NP-hard
® Proof: b, reduchion frow 54T
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Hardness of computing cond. prob.

® In fact, it's even worse: P(X=x | E=e) is #P complete
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Hardness of inference for general BNs

® Computing conditional distributions:
® Exact solution: #P-complete

® Approximate solution: /P —lord ot <
- o
/46)30(&/4“2 Pk F&\CL’}' l P[K\ -—ﬁ(ﬂ)/(é for 5:%

P
Relefne apprps =€ < 7(3) LU WP ped for g5
¢ Maximization:

® MPE: NP-complete

* MAP: NPPP-complete

s )
Xl"’x”" ] Xewa g '"’%m ]
® Inference in general BNs is really hard ®

¢ |s all hope lost?
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Inference

® Can exploit structure (conditional independence) to
efficiently perform exact inference in many practical

situations

® For BNs where exact inference is not possible, can use
algorithms for approximate inference (later this term)
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Computing conditional distributions

® Query: P(X | E=e) @

Pl e
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Inference example
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Potential for savings: Variable elimination!
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Intermediate solutions are distributions on fewer variables!
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Variable elimination in general graphs

® Push sums through product as far as possible

® Create new factor by summing out variables
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Removing irrelevant variables

Delete nodes not on active trail between query vars.



Variable elimination algorithm
¢ Given BN and Query P(X | E=e

® Remove irrelevant variables for {X,e}
® Choose an ordering of X,...,X_
® Set up initial factors: f, = P(X. | Pa;)
® Fori=1:n, X, & {X,E}
¢ Collect all factors f that include X,

¢ Generate new factor by marginalizing out X
g=2_11+
® Add g to set of factors
® Renormalize P(x,e) to get P(x | e)
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Multiplying factors
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Marginalizing factors

B\ B) = MAT @) P!
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¢ Read Koller & Friedman Chapter 17.4, 18.3-5, 19.1-3

® Homework 1 due in class Wednesday Oct 21
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