Probabilistic
Graphical Models

Lecture 6 —Variable Elimination

CS/CNS/EE 155
Andreas Krause

Announcements

® Recitations: Every Tuesday 4-5:30 in 243 Annenberg
¢ Homework 1 due in class Wed Oct 21

® Project proposals due tonight (Monday Oct 19)

Structure learning

¢ Two main classes of approaches:

@ Constraint based

—_— ———
® Search for P-map (if one exists):
® |dentify PDAG

® Turn PDAG into BN (using algorithm in reading)

¢ Key problem: Perform independence tests
* Optimizationhased . @ i ep
® Define scoring function (e.g., likelihood of data)

® Think about structure as parameters
® More common; can solve simple cases exactly

Finding the optimal MLE structure

® Optimal solution for MLE is always the fully
connected graph!!! ®
> Non-compact representation; Overfitting!!

@ Solutions:
® Priors over parameters / structures (later)
® Constraint optimization (e.g., bound #parents)

Bayesian learning

® Make prior assumptions about parameters P(6)

¢ Compute posterior

P(@\D} = F(ﬁ;gfu@ oL P(6) P(DL6)

C--'voa Jd{% D wm‘fh (VC&‘-/\U/’
P(xIpy = §plew) PKle) 46

ln MILE

P(¥IDY * P(k18) 6 zemmox PO

Conjugate priors

® Consider parametric families of prior distributions:
* P(0) = 1(0; a)
® o is called “hyperparameters” of prior

® A prior P(0) = f(0; «) is called conjugate for a
likelihood function P(D | 0) if P(6 | D) = f(0; &)
® Posterior has same parametric form
® Hyperparameters are updated based on data D

® Obvious questions (answered later):
* How to choose hyperparameters??
® Why limit ourselves to conjugate priors??

Posterior for Beta prior

@ Beta distribution

P(H) — Beta(@; 7, OéT) —

9aH_1(1 . Q)OéT—l

B(OéH, OéT)

¢ Likelihood:
P(D|0)=60m1(1—-0)""

@ Posterior:

PLOD) L P(8) P(dIE) % o

P[0 = Bedn (87 kg +7" (X7 ")

Why do priors help avoid overfitting?
P(D|9)= [P(D|G.60)iP(tg |9

® This Bayesian Score is tricky to analyze. Instead use:

logm

log P(D | G) ~ log P(D | G, 0g)

Dim(G)

® Why??
® Theorem: For Dirichlet priors, and for m—2> oo:

]
log P(D | G) — log P(D | G,05) — —2"

Dim(G) 4+ O(1)

8

log

27” Dim(G)

log P(D | G) ~ log P(D | G, 0g)

® This approximation is known as Bayesian Information
Criterion (related to Minimum Description Length)

l0g P(D | G) ~ m Y (T, Pay) — (X)) ~ 5™ Dim()

® Trades goodness-of-fit and structure complexity!
® Decomposes along families (computational efficiency!)
® Independent of hyperparameters! (Why??)

Consistency of BIC

® Suppose true distribution has P-map G*

® A scoring function Score(G ; D) is called consistent, if,
as m = oo and probability = 1 over D:

® G* maximizes the score
® All non-l-equivalent structures have strictly lower score

¢ Theorem: BIC Score is consistent!

® Consistency requires m =2 co. For finite samples,
priors matter!

10

Parameter priors

¢ How should we choose priors for discrete CPDs?

® Dirichlet (computational reasons). But how do we
specify hyperparameters??

@ K2 prior:
® FiX o
* P(fy Pax) = Dir(q,...,«)
¢ |s this a good choice?
& @ ©—=0
ROy Dieft) P (6yx¢-) *Dir(d
3 Eqm\h S‘M(’(e fi3¢ P{G Yix :TB :'D'.f(&:og
DAY

=) Eguiv gonple 5024
& oA

11

¢ Want to ensure “equivalent sample size” m’ is constant

® |dea:
® Define P’(X,...,X,)
For example: P’(X,,...,X.) = II. Uniform(Val(X.))
® Choose equivalent sample size m’

* Set A | pai =m’ P'(x;, pa)

Q@ (—

0(\/ = ol PU(y) :M‘?Pl[l,‘z) = U=

12

Score consistency

® A scoring function is called score-consistent, if all
l-equivalent structures have same score

OG-0 O

Gl
G @) 1(#)
oo Comsihveg i |(6) > ((6) = Seoe(6:D) =Seore(G!:p)

® K2 prior is inconsistent!
@ BDe prior is consistent

® |n fact, Bayesian score is consistent <~ BDe prior on
CPTsl!!

13

Score decomposability

® Proposition: Suppose we have
¢ Parameter independence

® Parameter modularity: if X has same parents in G, G, then
same prior.

® Structure modularity: P(G) is product over factors defined
over families (e.g.: P(G) = exp(-c|G|))

® Then Score(D : G) decomposes over the graph:
Score(G ; D) = 2. FamScore(X; | Pa;; D)

® |f G’ results from G by modifying a single edge, only
need to recompute the score of the affected families!!

14

Bayesian structure search

® Given consistent scoring function Score(G : D), want
to find to find graph G* that maximizes the score

® Finding the optimal structure is NP-hard in most
interesting cases (details in reading). ®

® Can find optimal tree/forest efficiently (Chow-Liu) ©

® Want practical algorithm for learning structure of
more general graphs..

15

Local search algorithms

¢ Start with empty graph (better: Chow-Liu tree)
¢ |teratively modify graph by

® Edge addition

® Edge removal

® Edge reversal

¢ Need to guarantee acyclicity (can be checked
efficiently)

® Be careful with lI-equivalence (can search over
equivalence classes directly!)

¢ May want to use simulated annealing to avoid local
maxima

16

Efficient local search

Scove (G—‘D\

® |f Score is decomposable, only need to recompute
affected families!

17

Alternative: Fixed order search

® Suppose we fix order X,,...,X_ of variables

® Want to find optimal structure s.t. for all X::
Pa, C {X,,....Xi 1}

e A= | 7™
rm__e,‘,ok /465}(~lb

(om puhe P G (% 14)
/é}""ww FMS(U“G()()

Po- > A
Gore (GiD) = &) Foun e (i; | Pa;

= GBid O(D"F:'wa(_ JJY!«A\»-&/!

18

Fixed order for d parents

® Fix ordering

® For each variable X

® For each subset A C {X,...X.;}, |[A|<d
compute FamScore(X, | A)

® Set Pa, = argmax, FamScore(X. |A)
@ |f score is decomposable =2 optimal solution!!

® Can find best structure by searching over all orderings!

19

Searching structures vs orderings?

® Ordering search

* Find optimal BN for fixed order

® Space of orderings “much smaller” than space of graphs..

2
* n! orderings vs 2" directed graphs (counting DAGs more complicated)

@ Structure search
¢ Can have arbitrary number of parents
® Cheaper per iteration
® More control over possible graph modifications

20

What you need to know

@ Conjugate priors
® Beta / Dirichlet
® Predictions, updating of hyperparameters

¢ Meta-BN encoding parameters as variables

® Choice of hyperparameters
° BDe prior =7 Scaot ConSiplacy

® Decomposability of scores and implications

@ Local search
® On graphs
® On orderings (optimal for fixed order)

21

22

¢ How do we specify distributions that satisfy particular
independence properties?

=» Representation

¢ How can we identify independence properties
present in data?

=» Learning

® How can we exploit independence properties for
efficient computation?

=>» Inference

23

Bayesian network inference

® Compact representation of distributions over large
number of variables

® (Often) allows efficient exact inference (computing
marginals, etc.)

HailFinder
56 vars
~ 3 states each

=>~102° terms
> 10.000 years
| on Top
supercomputers

24

Typical queries: Conditional distribution

® Compute distribution of some

@ variables given values for others

Obgere [M=T
(ompoh e P[E:Tl[\/\:h@
e P(E-TIM=D) = RET o)
P(=T)

@ ’P(Ele/"\:TB > ? é? gf(E:T‘M:Y‘B}LIAx‘IBD‘>

—_—
P(EYP) P~ £6) Pl y

g/*;\J
9 ‘e §

/\/om‘vc, ANM &pmw}{n&[' #Vaxfg .

25

Typical queries: Maxizimization
® MPE (Most probable explanation):

@ Given values for some vars,

compute most likely assignment to

all remaining vars
e Goren = Fo MET {nd
@ (e b* o) :mw(P(J-F T, e\b,q)
MPE o AP ® MAP (Maximum a posteriori):
doa'd neces oy Compute most likely assignment to

3,.}6 Sewm € anfweSg Lo]
some variables

e% = oegmac PLO-F T Ee)=
< Ao 0K a\i‘b PCIFMT e(a,b)

26

Hardness of computing conditional prob.

® Computing P(X=x | E=e) is NP-hard
® Proof: b, reduchion frow 54T

Cioom booleom frmdy P = (v Ko/ ¥ (+H VKT K)o
Joes Hue o3 A Sob ogigmmet Ao Koo K

D& L&k -
682 6—

v a @ gat &> Pl o "'"T) 20

27

Hardness of computing cond. prob.

® In fact, it's even worse: P(X=x | E=e) is #P complete

@ & B - @

A, | £ K-t Sok.
7 O M’y,
K g.af ULS'S‘WJ

28

Hardness of inference for general BNs

® Computing conditional distributions:
® Exact solution: #P-complete

® Approximate solution: /P —lord ot <
- o
/46)30(&/4“2 Pk F&\CL’}' l P[K\ -—ﬁ(ﬂ)/(é for 5:%

P
Relefne apprps =€ < 7(3) LU WP ped for g5
¢ Maximization:

® MPE: NP-complete

* MAP: NPPP-complete

s)
Xl"’x”"] Xewa g '"’%m]
® Inference in general BNs is really hard ®

¢ |s all hope lost?

29

Inference

® Can exploit structure (conditional independence) to
efficiently perform exact inference in many practical

situations

® For BNs where exact inference is not possible, can use
algorithms for approximate inference (later this term)

30

Computing conditional distributions

® Query: P(X | E=e) @

Pl e
Prcte) = Bk < Py o

=) Re,«\dmw(al‘ZC (ovc\r- S‘} to ?/4'
P(Xe) @

31

Inference example

= ? (D(l\,m\,a od e (9

Ay b
= Q1 P(B) P(t) PfCH PG k) Pl ’/
O\((yb

o~
o yemd ?—tpdnwd}y&z/
ferms

V"\M‘?’

32

Potential for savings: Variable elimination!

Plxe 1) = DN 9 P HK 1) P Kl POGL) PO 1K)

Ky Koo K
g

Aihibbily DY) ’é‘? (e, (K. g P (sl)g %fp{) Plis)
fizﬁ?s X =% =Ky = K —\AW |
:'7’[5(5‘(‘6)4)
X=X, 245 /W‘zt%‘ \
WP —
P e S

Intermediate solutions are distributions on fewer variables!
33

Variable elimination in general graphs

® Push sums through product as far as possible

® Create new factor by summing out variables

P(e,m)s £ P(E) Pb) P=IEE) FTeIPmk)

b(q‘a

@ = PE) 2P S P(alBb) Ponla) I)
M
A_(E(6(""’\) ,

t/vz_/J

e o€
M)

34

Removing irrelevant variables

Delete nodes not on active trail between query vars.

Variable elimination algorithm
¢ Given BN and Query P(X | E=e

® Remove irrelevant variables for {X,e}
® Choose an ordering of X,...,X_
® Set up initial factors: f, = P(X. | Pa;)
® Fori=1:n, X, & {X,E}
¢ Collect all factors f that include X,

¢ Generate new factor by marginalizing out X
g=2_11+
® Add g to set of factors
® Renormalize P(x,e) to get P(x | e)

36

Multiplying factors

. g=> 11
Y T
El - - F

Lo(A8) , L, (BL)

£ Aot
: 7A=1 B5F F)= (4=, b-
/1[([14,5,(/) AC . _Z[ATIBF F) f F)

ATTTRILEE VIt
S

37

Marginalizing factors

B\ B) = MAT @) P!
K - ?(&/ 2(5) #/4716),//4—%‘.0)
F

38

¢ Read Koller & Friedman Chapter 17.4, 18.3-5, 19.1-3

® Homework 1 due in class Wednesday Oct 21

39

