
Probabilistic

Graphical Models

Lecture 6 –Variable Elimination

CS/CNS/EE 155

Andreas Krause

2

Announcements
Recitations: Every Tuesday 4-5:30 in 243 Annenberg

Homework 1 due in class Wed Oct 21

Project proposals due tonight (Monday Oct 19)

3

Structure learning
Two main classes of approaches:

Constraint based

Search for P-map (if one exists):

Identify PDAG

Turn PDAG into BN (using algorithm in reading)

Key problem: Perform independence tests

Optimization based

Define scoring function (e.g., likelihood of data)

Think about structure as parameters

More common; can solve simple cases exactly

4

Finding the optimal MLE structure

Optimal solution for MLE is always the fully

connected graph!!! �

�Non-compact representation; Overfitting!!

Solutions:

Priors over parameters / structures (later)

Constraint optimization (e.g., bound #parents)

5

Bayesian learning
Make prior assumptions about parameters P(θ)

Compute posterior

6

Conjugate priors
Consider parametric families of prior distributions:

P(θ) = f(θ; α)

α is called “hyperparameters” of prior

A prior P(θ) = f(θ; α) is called conjugate for a

likelihood function P(D | θ) if P(θ | D) = f(θ; α’)

Posterior has same parametric form

Hyperparameters are updated based on data D

Obvious questions (answered later):

How to choose hyperparameters??

Why limit ourselves to conjugate priors??

7

Posterior for Beta prior
Beta distribution

Likelihood:

Posterior:

8

Why do priors help avoid overfitting?

This Bayesian Score is tricky to analyze. Instead use:

Why??

Theorem: For Dirichlet priors, and for m�∞:

9

BIC score

This approximation is known as Bayesian Information

Criterion (related to Minimum Description Length)

Trades goodness-of-fit and structure complexity!

Decomposes along families (computational efficiency!)

Independent of hyperparameters! (Why??)

10

Consistency of BIC
Suppose true distribution has P-map G*

A scoring function Score(G ; D) is called consistent, if,

as m �∞ and probability � 1 over D:

G* maximizes the score

All non-I-equivalent structures have strictly lower score

Theorem: BIC Score is consistent!

Consistency requires m �∞. For finite samples,

priors matter!

11

Parameter priors
How should we choose priors for discrete CPDs?

Dirichlet (computational reasons). But how do we

specify hyperparameters??

K2 prior:

Fix α

P(θX | PaX
) = Dir(α,…,α)

Is this a good choice?

12

BDe prior
Want to ensure “equivalent sample size” m’ is constant

Idea:

Define P’(X1,…,Xn)

For example: P’(X1,…,Xn) = ∏i Uniform(Val(Xi))

Choose equivalent sample size m’

Set αxi | pai
= m’ P’(xi, pai)

13

Score consistency
A scoring function is called score-consistent, if all

I-equivalent structures have same score

K2 prior is inconsistent!

BDe prior is consistent

In fact, Bayesian score is consistent � BDe prior on

CPTs!!

14

Score decomposability
Proposition: Suppose we have

Parameter independence

Parameter modularity: if X has same parents in G, G’, then

same prior.

Structure modularity: P(G) is product over factors defined

over families (e.g.: P(G) = exp(-c|G|))

Then Score(D : G) decomposes over the graph:

Score(G ; D) = ∑i FamScore(Xi | Pai; D)

If G’ results from G by modifying a single edge, only

need to recompute the score of the affected families!!

15

Bayesian structure search
Given consistent scoring function Score(G : D), want

to find to find graph G* that maximizes the score

Finding the optimal structure is NP-hard in most

interesting cases (details in reading). �

Can find optimal tree/forest efficiently (Chow-Liu) ☺

Want practical algorithm for learning structure of

more general graphs..

16

Local search algorithms
Start with empty graph (better: Chow-Liu tree)

Iteratively modify graph by

Edge addition

Edge removal

Edge reversal

Need to guarantee acyclicity (can be checked

efficiently)

Be careful with I-equivalence (can search over

equivalence classes directly!)

May want to use simulated annealing to avoid local

maxima

17

Efficient local search

If Score is decomposable, only need to recompute

affected families!

A

B

C

D

E

F

G

I

H

J

A

B

C

D

E

F

G

I

H

J

G G’

18

Alternative: Fixed order search
Suppose we fix order X1,…,Xn of variables

Want to find optimal structure s.t. for all Xi:

Pai ⊆ {X1,…,Xi-1}

19

Fixed order for d parents
Fix ordering

For each variable Xi

For each subset A⊆ {X1,…,Xi-1}, |A|≤ d

compute FamScore(Xi | A)

Set Pai = argmaxA FamScore(Xi |A)

If score is decomposable � optimal solution!!

Can find best structure by searching over all orderings!

20

Searching structures vs orderings?

Ordering search

Find optimal BN for fixed order

Space of orderings “much smaller” than space of graphs..

n! orderings vs 2n2
directed graphs (counting DAGs more complicated)

Structure search

Can have arbitrary number of parents

Cheaper per iteration

More control over possible graph modifications

21

What you need to know
Conjugate priors

Beta / Dirichlet

Predictions, updating of hyperparameters

Meta-BN encoding parameters as variables

Choice of hyperparameters

BDe prior

Decomposability of scores and implications

Local search

On graphs

On orderings (optimal for fixed order)

22

23

Key questions
How do we specify distributions that satisfy particular

independence properties?

� Representation

How can we identify independence properties

present in data?

� Learning

How can we exploit independence properties for

efficient computation?

� Inference

24

Bayesian network inference
Compact representation of distributions over large

number of variables

(Often) allows efficient exact inference (computing

marginals, etc.)

HailFinder

56 vars

~ 3 states each

�~1026 terms

> 10.000 years

on Top

supercomputers
JavaBayes applet

25

Typical queries: Conditional distribution

Compute distribution of some

variables given values for othersE B

A

J M

26

Typical queries: Maxizimization
MPE (Most probable explanation):

Given values for some vars,

compute most likely assignment to

all remaining vars

MAP (Maximum a posteriori):

Compute most likely assignment to

some variables

E B

A

J M

27

Hardness of computing conditional prob.

Computing P(X=x | E=e) is NP-hard

Proof:

28

Hardness of computing cond. prob.

In fact, it’s even worse: P(X=x | E=e) is #P complete

29

Hardness of inference for general BNs

Computing conditional distributions:

Exact solution: #P-complete

Approximate solution:

Maximization:

MPE: NP-complete

MAP: NPPP-complete

Inference in general BNs is really hard �

Is all hope lost?

30

Inference
Can exploit structure (conditional independence) to

efficiently perform exact inference in many practical

situations

For BNs where exact inference is not possible, can use

algorithms for approximate inference (later this term)

31

Computing conditional distributions

Query: P(X | E=e)
E B

A

J M

32

Inference example

E B

A

J M

33

Potential for savings: Variable elimination!

Intermediate solutions are distributions on fewer variables!

X1 X2 X3 X4 X5

34

Variable elimination in general graphs

Push sums through product as far as possible

Create new factor by summing out variables

E B

A

J M

35

Removing irrelevant variables

Delete nodes not on active trail between query vars.

E B

A

J M

36

Variable elimination algorithm
Given BN and Query P(X | E=e)

Remove irrelevant variables for {X,e}

Choose an ordering of X1,…,Xn

Set up initial factors: fi = P(Xi | Pai)

For i =1:n, Xi ∉ {X,E}

Collect all factors f that include Xi

Generate new factor by marginalizing out Xi

Add g to set of factors

Renormalize P(x,e) to get P(x | e)

37

Multiplying factors

38

Marginalizing factors

39

Tasks
Read Koller & Friedman Chapter 17.4, 18.3-5, 19.1-3

Homework 1 due in class Wednesday Oct 21

