Probabilistic Graphical Models

Lecture 5 – Bayesian Learning of Bayesian Networks

CS/CNS/EE 155 Andreas Krause

Announcements

- Recitations: Every Tuesday 4-5:30 in 243 Annenberg
- Homework 1 out. Due in class Wed Oct 21
- Project proposals due Monday Oct 19

Project proposal

- At most 2 pages. One proposal per project
- due Monday Oct 19
- Please clearly specify
 - What is the idea of this project?
 - Who will be on the team?
 - What data will you use? Will you need time "cleaning up" the data?
 - What code will you need to write? What existing code are you planning to use?
 - What references are relevant? Mention 1-3 related papers.
 - What are you planning to accomplish by the Nov 9 milestone?

Project ideas

- Ideally, do graphical model project related to your research (and, e.g., data that you're working with)
 - Must be a new project started for the class!
- Website has examples for
 - Project ideas
 - Data sets
 - Code

Project ideas

- All projects should involve using PGMs for some data set, and then doing some experiments
- Learning related
 - Experiment with different algorithms for structure / parameter learning
- Inference related
 - Compare different algorithms for exact or approximate inference
- Algorithmic / decision making
 - Experiment with algorithms for value of information, MAP assignment, ...
- Application related
 - Attempt to answer interesting domain-related question using graphical modeling techniques

Data sets

- Some cool data sets made available specifically for this course!!
 - → Contact TAs to get access to data.
- Exercise physiological data (collected by John Doyle's group)
 - E.g., do model identification / Bayesian filtering
- Fly data (by Pietro Perona and Michael Dickinson et al.)
 - "Activity recognition" what are the patterns in fly behavior? Clustering / segmentation of trajectories?
- Urban challenge data (GPS data + LADAR + Vision) by Richard Murray et al.
 - Sensor fusion using DBNs; SLAM
- JPL MER data by Larry Matthies et al.
 - Predict slip based on orbital imagery + GPS tracks
 - Segment images to identify dangerous areas for rover
- LDPC decoding
 - Compare new approximate inference techniques with Loopy-BP
- Other open data sets mentioned on course webpage

Code

- Libraries for graphical modeling by Intel, Microsoft, ...
- Toolboxes
 - computer vision image manipulations
 - Topic modeling
 - Nonparametric Bayesian modeling (Dirichlet processes / Gaussian processes / ...)

Learning general BNs

	Known structure	Unknown structure
Fully observable	Easy i	hard 2.
Missing data	hard 3. (EM)	very hard (lax)

Algorithm for BN MLE

Given BN structure 6

For each variable X; (earn Oxillai = Court (Xi, Pai) Court (Pai)

=> globally naxionm likelihood estimate for fixed structure G

Structure learning

- Two main classes of approaches:
- Constraint based
 - Search for P-map (if one exists):
 - Identify PDAG
 - Turn PDAG into BN (using algorithm in reading)
 - Key problem: Perform independence tests
- Optimization based com ing ap!
 - Define scoring function (e.g., likelihood of data)
 - Think about structure as parameters
 - More common; can solve simple cases exactly

MLE for structure learning

For fixed structure, can compute likelihood of data

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{\ell} \sum_{i} \log P(X_{i} = x_{i}^{(\ell)} \mid \mathbf{Pa}_{i} = \mathbf{pa}_{i}^{(\ell)}) \stackrel{\mathcal{C}}{\sim} i \stackrel{\mathcal{C}}{\sim})$$

$$= \sum_{i} \sum_{X_{i}} \sum_{P^{a_{i}}} Count(X_{i}^{a_{i}}) \log \frac{\stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}})}{\stackrel{\mathcal{C}}{\sim} (P^{a_{i}})}$$

$$= m \sum_{i} \sum_{X_{i}} \sum_{P^{a_{i}}} \stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}}) \log \frac{\stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}})}{\stackrel{\mathcal{C}}{\sim} (P^{a_{i}})} \log \frac{\stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}})}{\stackrel{\mathcal{C}}{\sim} (P^{a_{i}})} \log \frac{\stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}})}{\stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}})} \log \stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}}) \log \stackrel{\mathcal{C}}{\sim} (X_{i}^{a_{i}}, P^{a_{i}}, P^{a_{i}}) \log \stackrel{\mathcal{C}}{\sim} (X_$$

Decomposable score

Log-data likelihood

$$\log \widehat{P}(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{i}) - m \sum_{i} \widehat{H}(X_{i})$$
independent of graph fructure.

- MLE score decomposes over families of the BN (nodes + parents)
- Score(G; D) = \sum_{i} FamScore(X_{i} | Pa_i; D)
- Can exploit for computational efficiency!

Finding the optimal MLE structure

Log-likelihood score:

$$Score(G; D) = \sum_{i} \widehat{I}(X_i, \mathbf{Pa}_i)$$

- Want G* = argmax_G Score(G; D)
- Lemma: $G \subseteq G' \rightarrow Score(G; D) \leq Score(G'; D)$

Finding the optimal MLE structure

- Optimal solution for MLE is always the fully connected graph!!!
 - → Non-compact representation; Overfitting!!
- Solutions:
 - Priors over parameters / structures (later)
 - Constraint optimization (e.g., bound #parents)

Chow-Liu algorithm

For each pair X_i, X_i of variables compute

$$\widehat{P}(x_i, x_j) = \frac{\operatorname{Count}(x_i, x_j)}{m}$$

Compute mutual information

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define complete graph with weight of edge (X_i,X_i) given by the mutual information
- Find maximum spanning tree skeleton
- Orient the skeleton using breadth-first search

Today: Bayesian learning

- X Bernoulli variable
- Which is better:
 - Observe 1 H and 2 T $6^{\frac{1}{6}} = \frac{1}{3}$
 - Observe 10 H and 20 T
 - Observe 100 H and 200 T 6 3
- MLE is same in all three cases
- However, should be much more "confident" about
 MLE if we have more data
 - → Want to model distributions over parameters

Bayesian learning

- ullet Make prior assumptions about parameters P(θ)
- Compute posterior

Bayesian Learning for Binomial

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

Likelihood function:

$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- How do we choose prior?
 - Many possible answers...
 - Pragmatic approach: Want computationally "simple" (and still flexible) prior

Conjugate priors

- Consider parametric families of prior distributions:
 - $P(\theta) = f(\theta; \alpha)$
 - ullet α is called "hyperparameters" of prior
- A prior $P(\theta) = f(\theta; \alpha)$ is called **conjugate** for a likelihood function $P(D \mid \theta)$ if $P(\theta \mid D) = f(\theta; \alpha')$
 - Posterior has same parametric form
 - Hyperparameters are updated based on data D
- Obvious questions (answered later):
 - How to choose hyperparameters??
 - Why limit ourselves to conjugate priors??

Conjugate prior for Binomial

Beta distribution

$$Beta(\theta; \alpha_H, \alpha_T) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)}$$
Mondi zetion constant

Posterior for Beta prior

Beta distribution

$$P(\theta) = \text{Beta}(\theta; \alpha_H, \alpha_T) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)}$$

Likelihood:

$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

Posterior:

$$P(\theta|D) \propto P(\theta) P(D(\theta) \propto \theta^{d_H + m_H - 1} (1 - \theta)^{d_T + m_T - 1}$$

$$P(\theta|D) = Bela(\theta) d_H + m_H d_T + m_T)$$

Bayesian prediction

- Prior $P(\theta) = Beta(\alpha_H, \alpha_T)$
- Barroull: P(X=H)=0
- Suppose we observe D= {m_H heads, and m_T tails}
- What's P(X=H | D), i.e., prob. that next flip is heads?

Prior = Smoothing

$$\mathbb{E}[\theta] = \frac{m_H + \alpha_H}{m_H + m_T + \alpha_H + \alpha_T} = \frac{m_H + \gamma m'}{m_H + m'}$$
Where $\mathbf{m}' = \alpha_H + \alpha_H +$

- Where m' = α_H + α_T , and $\gamma = \alpha_H$ / m' , $\delta \leq \gamma \leq l$ • m' is called "equivalent sample size"
- "hallucinated" coin flips

$$E[0] = \frac{m}{m+m} \frac{m_{H}}{m} + \frac{m'}{m+m'} \gamma$$

$$m = 0 \quad \text{prior} \quad \text{mean}$$

$$m = 0 \quad \text{prior}$$

→ Interpolate between MLE and prior mean

Conjugate for multinomial

- If X∈{1,...,k} has k states:
- Multinomial likelihood

$$P(\mathcal{D} \mid \theta) = \theta_1^{m_1} \theta_2^{m_2} \dots \theta_k^{m_k}$$

where
$$\sum_{i} \theta_{i} = 1$$
, $\theta_{i} \geq 0$

Conjugate prior: Dirichlet distribution

$$P(\theta) = \text{Dir}(\theta; \alpha_1, \dots, \alpha_k) = \frac{1}{Z} \prod_i \theta_i^{\alpha_i - 1}$$

• If observe $D=\{m_1 \ 1s, m_2 \ 2s, ... \ m_k \ ks\}$, then

$$P(\theta \mid \mathcal{D}) = \text{Dir}(\theta; \alpha_1 + m_1, \dots, \alpha_k + m_k)$$

Parameter learning for CPDs

- Parameters P(X | Pa_X)
- ullet Have one parameter $heta_{\mathrm{X}\,|\,\mathrm{pa}_{\mathrm{X}}}$ for each value of parents pa_{X}

$$P(\theta_{x}|P_{a_{x}}=u) = Dir(d_{1}...d_{n})$$

$$P(\theta_{x}|P_{a_{x}}=u_{1}) = Dir(d_{1}...d_{n})$$

$$P(\theta_{x}|P_{a_{x}}=u_{1}) = \prod_{u} P(\theta_{x}|P_{a_{x}}=u_{N})$$
"(ocal parameter independence")

Parameter learning for BNs

- Each CPD P(X | Pa_X; $\theta_{X|Pa_X}$) has its own sets of parameters P($\theta_{X|pa_Y}$)
 - → Dirichlet distribution
- Want to compute posterior over all parameters

$$P(\theta_{X_1|\mathbf{Pa}_{X_1}},\ldots,\theta_{X_n|\mathbf{Pa}_{X_n}}\mid\mathcal{D})$$

- How can we do this??
- Crucial assumption: Prior distribution over parameters factorizes ("parameter independence")

$$P(\theta_{X_1|\mathbf{Pa}_{X_1}}, \dots, \theta_{X_n|\mathbf{Pa}_{X_n}}) = \prod_i P(\theta_{X_i|\mathbf{Pa}_{X_i}})$$

Parameter Independence

Assume

$$P(\theta_{X_1|\mathbf{Pa}_{X_1}}, \dots, \theta_{X_n|\mathbf{Pa}_{X_n}}) = \prod_i P(\theta_{X_i|\mathbf{Pa}_{X_i}})$$

- Why useful?
- If data is fully observed, then

$$P(\theta_{X_1|\mathbf{Pa}_{X_1}}, \dots, \theta_{X_n|\mathbf{Pa}_{X_n}} \mid \mathcal{D}) = \prod_i P(\theta_{X_i|\mathbf{Pa}_{X_i}} \mid \mathcal{D})$$

I.e., posterior still independent. Why??

Meta-BN with parameters

Meta-BN

Plate notation

Meta BN contains one copy of original BN per data sample, and one variable for each parameter

Under parameter-independences, data d-separates parameters

Also: Parameters d-separate copies of BN: P(D, X10) = P(D16) P(X16)

Bayesian learning of Bayesian Networks

- Specifying priors helps overfitting
 - Do not commit to fixed parameter estimate, but maintain distribution
- So far: Know how to specify priors over parameters for fixed structure.
- Why should we commit to fixed structure??
- Fully Bayesian inference

$$P(\mathbf{X} \mid \mathcal{D}) \propto \sum_{\mathcal{G}} P(\mathcal{G}) \int \underbrace{P(\theta_{\mathcal{G}} \mid \mathcal{G}) P(\mathcal{D} \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\mathbf{X} \mid \mathcal{D}, \mathcal{G}, \theta_{\mathcal{G}}) d\theta}_{\text{prior over Structure}}$$

$$= P(X \mid \mathcal{G}, \theta_{\mathcal{G}})$$

$$= P(X \mid \mathcal{G}, \theta_{\mathcal{G}})$$

Fully Bayesian inference

$$P(\mathbf{X} \mid \mathcal{D}) \propto \sum_{\mathcal{G}} P(\mathcal{G}) \int P(\theta_{\mathcal{G}} \mid \mathcal{G}) P(\mathcal{D} \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\mathbf{X} \mid \mathcal{G}, \theta_{\mathcal{G}}) d\theta$$

- P(G): Prior over graphs
 - E.g.: P(G) = exp(-c Dim(G))

Din (c) = # free parans

- Called "Bayesian Model Averaging"
- Hopelessly intractable for larger models
- Often: want to pick most likely structure:

$$\mathcal{G}^* = \operatorname*{argmax}_{\mathcal{G}} P(\mathcal{G} \mid \mathcal{D}) = \operatorname*{argmax}_{\mathcal{G}} \log P(\mathcal{G}) + \log P(\mathcal{D} \mid \mathcal{G})$$

Why do priors help overfitting?

$$P(\mathcal{D} \mid \mathcal{G}) = \int P(\mathcal{D} \mid \mathcal{G}, \theta_{\mathcal{G}}) dP(\theta_{\mathcal{G}} \mid \mathcal{G})$$

This Bayesian Score is tricky to analyze. Instead use:

$$\log P(\mathcal{D} \mid \mathcal{G}) \approx \log P(\mathcal{D} \mid \mathcal{G}, \widehat{\theta_{\mathcal{G}}}) - \frac{\log m}{2} \operatorname{Dim}(\mathcal{G})$$

- Why??
- **Theorem**: For Dirichlet priors, and for $m \rightarrow \infty$:

$$\log P(\mathcal{D} \mid \mathcal{G}) \to \log P(\mathcal{D} \mid \mathcal{G}, \widehat{\theta_{\mathcal{G}}}) - \frac{\log m}{2} \operatorname{Dim}(\mathcal{G}) + \mathcal{O}(1)$$

BIC score

$$\log P(\mathcal{D} \mid \mathcal{G}) \approx \underline{\log P(\mathcal{D} \mid \mathcal{G}, \widehat{\theta_{\mathcal{G}}})} - \frac{\log m}{2} \operatorname{Dim}(\mathcal{G})$$

This approximation is known as Bayesian Information
 Criterion (related to Minimum Description Length)

$$\log P(\mathcal{D} \mid \mathcal{G}) \approx m \sum_{i} \left(\widehat{I}(X_i; \mathbf{Pa}_i) - \widehat{H}(X_i) \right) - \frac{\log m}{2} \operatorname{Dim}(\mathcal{G})$$

- Trades goodness-of-fit and structure complexity!
- Decomposes along families (computational efficiency!)
- Independent of hyperparameters! (Why??)

Consistency of BIC

- Suppose true distribution has P-map G*
- A scoring function Score(G; D) is called consistent, if, as m → ∞ and probability → 1 over D:
 - G* maximizes the score
 - All non-I-equivalent structures have strictly lower score
- Theorem: BIC Score is consistent!
- Consistency requires m $\rightarrow \infty$. For finite samples, priors matter!

Parameter priors

- How should we choose priors for discrete CPDs?
- Dirichlet (computational reasons). But how do we specify hyperparameters??
- K2 prior:
 - \bullet Fix α
 - $P(\theta_{X \mid Pa_X}) = Dir(\alpha,...,\alpha)$
- Is this a good choice?

BDe prior

- Want to ensure "equivalent sample size" m' is constant
- Idea:
 - Define $P'(X_1,...,X_n)$ For example: $P'(X_1,...,X_n) = \prod_i Uniform(Val(X_i))$
 - Choose equivalent sample size m'

$$d_y = m' P'(y) = m' \sum_{x} P(x,y) = \sum_{x} \alpha_{y|x}$$

Bayesian structure search

 Given consistent scoring function Score(G:D), want to find to find graph G* that maximizes the score

 Finding the optimal structure is NP-hard in most interesting cases (details in reading).

Can find optimal tree/forest efficiently (Chow-Liu)

 Want practical algorithm for learning structure of more general graphs..

Local search algorithms

- Start with empty graph (better: Chow-Liu tree)
- Iteratively modify graph by
 - Edge addition
 - Edge removal
 - Edge reversal
- Need to guarantee acyclicity (can be checked efficiently)
- Be careful with I-equivalence (can search over equivalence classes directly!)
- May want to use simulated annealing to avoid local maxima

Efficient local search

Want to avoid recomputing the score after each modification!

Score decomposability

- Proposition: Suppose we have
 - Parameter independence
 - Parameter modularity: if X has same parents in G, G', then same prior.
 - Structure modularity: P(G) is product over factors defined over families (e.g.: P(G) = exp(-c|G|))
- Then Score(D : G) decomposes over the graph:

Score(G; D) =
$$\sum_{i}$$
 FamScore(X_{i} | Pa_i; D)

• If G' results from G by modifying a single edge, only need to recompute the score of the affected families!!

What you need to know

- Conjugate priors
 - Beta / Dirichlet
 - Predictions, updating of hyperparameters
- Meta-BN encoding parameters as variables
- Choice of hyperparameters
 - BDe prior
- Decomposability of scores and implications
- Local search

Tasks

- Read Koller & Friedman Chapter 17.4, 18.3-5
- Project proposal due Monday Oct 19 (contact TAs or instructor to discuss ideas)
- Homework 1 due Wednesday Oct 21