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Announcements

® Recitations: Every Tuesday 4-5:30 in 243 Annenberg
¢ Homework 1 out. Due in class Wed Oct 21
® Project proposals due Monday Oct 19



Project proposal

¢ At most 2 pages. One proposal per project
¢ due Monday Oct 19

® Please clearly specify
¢ What is the idea of this project?
® Who will be on the team?

* What data will you use? Will you need time "cleaning up"
the data?

® What code will you need to write? What existing code are
you planning to use?

® What references are relevant? Mention 1-3 related papers.

® What are you planning to accomplish by the Nov 9
milestone?



¢ |deally, do graphical model project related to your
research (and, e.g., data that you’re working with)
® Must be a new project started for the class!

® Website has examples for
® Project ideas

@ Data sets
¢ Code



® All projects should involve using PGMs for some data
set, and then doing some experiments

® Learning related

¢ Experiment with different algorithms for structure / parameter
learning

® Inference related

® Compare different algorithms for exact or approximate
inference

® Algorithmic / decision making

® Experiment with algorithms for value of information, MAP
assignment, ...

@ Application related

® Attempt to answer interesting domain-related question using
graphical modeling techniques
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Data sets

Some cool data sets made available specifically for this course!!
=» Contact TAs to get access to data.

Exercise physiological data (collected by John Doyle’s group)
¢ E.g., do model identification / Bayesian filtering

Fly data (by Pietro Perona and Michael Dickinson et al.)

¢ “Activity recognition” — what are the patterns in fly behavior? Clustering /
segmentation of trajectories?

Urban challenge data (GPS data + LADAR + Vision) by Richard
Murray et al.

¢ Sensor fusion using DBNs; SLAM
JPL MER data by Larry Matthies et al.

* Predict slip based on orbital imagery + GPS tracks
® Segment images to identify dangerous areas for rover

LDPC decoding

¢ Compare new approximate inference techniques with Loopy-BP
Other open data sets mentioned on course webpage



® Libraries for graphical modeling by Intel, Microsoft, ...

¢ Toolboxes
® computer vision image manipulations
® Topic modeling

® Nonparametric Bayesian modeling (Dirichlet processes /
Gaussian processes / ...)



Learning general BNs
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Structure learning

¢ Two main classes of approaches:

@ Constraint based

—_— ———
® Search for P-map (if one exists):
® |dentify PDAG

® Turn PDAG into BN (using algorithm in reading)

¢ Key problem: Perform independence tests

* Optimizationhased . @ i ep
® Define scoring function (e.g., likelihood of data)

® Think about structure as parameters
® More common; can solve simple cases exactly
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MLE for structure learning

® For fixed structure, can compute likelihood of data
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Decomposable score

¢ |og-data likelihood
log P(D | 0g,G) =m > _I(X;,Pa;) — mZﬁf

g

® MLE score decomposes over families of the BN (nodes
+ parents)

® Score(G ; D) = 2. FamScore(X. | Pa;; D)

® Can exploit for computational efficiency!
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Finding the optimal MLE structure

® Log-likelihood score:

Score(G; D) = Z I(X;, Pa;)

® Want G = argmax Score(G ; D)
® Lemma: G C G’ =» Score(G; D) < Score(G’; D)
I q/nﬁ"‘"’“’-%;ﬂ never h""ﬁl/
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Finding the optimal MLE structure

® Optimal solution for MLE is always the fully
connected graph!!! ®
> Non-compact representation; Overfitting!!

@ Solutions:
® Priors over parameters / structures (later)
® Constraint optimization (e.g., bound #parents)
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Chow-Liu algorithm

® For each pair X;, X; of variables compute

ﬁ(a:i,atj) _ Count(x;, ;)

m

® Compute mutual information

~ P(z;, ;)
I XMX P 79 I =~ St

()= 2 P08 by

¢ Define complete graph with weight of edge (X, X.)

given by the mutual information

® Find maximum spanning tree =» skeleton
@ Orient the skeleton using breadth-first search
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Today: Bayesian learning

@ X Bernoulli variable
¢ Which is better: -
e Observel1Hand2T ©°%

@ Observe 10 Hand 20T
./l
@ Observe 100Hand 200T &

@,) cy
L 3KV
W W~

I
3
@ MLE is same in all three cases

¢ However, should be much more “confident” about
MLE if we have more data

=» Want to model distributions over parameters
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Bayesian learning

® Make prior assumptions about parameters P(6)

¢ Compute posterior

P(@\D} = F(ﬁ;gfu@ oL P(6) P(DL6)
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Bayesian Learning for Binomial

P(0 | D) x P(D | 6)P(6)
¢ Likelihood function:

P(D|6)=0""(1-0)""

¢ How do we choose prior?
® Many possible answers...

® Pragmatic approach: Want computationally “simple”
(and still flexible) prior
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Conjugate priors

® Consider parametric families of prior distributions:
* P(0) = 1(0; a)
® o is called “hyperparameters” of prior

® A prior P(0) = f(0; «) is called conjugate for a
likelihood function P(D | 0) if P(6 | D) = f(0; &)
® Posterior has same parametric form
® Hyperparameters are updated based on data D

® Obvious questions (answered later):
* How to choose hyperparameters??
® Why limit ourselves to conjugate priors??
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Conjugate prior for Binomial

@ Beta distribution
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Posterior for Beta prior

@ Beta distribution

P(H) — Beta(@; 7, OéT) —

9aH_1(1 . Q)OéT—l

B(OéH, OéT)

¢ Likelihood:
P(D|0)=60m1(1—-0)""

@ Posterior:

PLOD) L P(8) P(dIE) % o

P[0 = Bedn (87 kg +7" (X7 ")
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Bayesian prediction

® Prior P(0) = Beta(ay, o) Bowodls P ¥7 H)=6
® Suppose we observe D= {m_, heads, and m; tails}
® What’s P(X=H | D), i.e., prob. that next flip is heads?

Dix-w\D) = ( O Ple[d) Ao = ffe|d): 2T
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Prior = Smoothing
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® Wherem’ =ag+apnandy=ag/ m’ O pn <l

* m’ is called “equivalent sample size”
=>» “hallucinated” coin flips
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=>» Interpolate between MLE and prior mean
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Conjugate for multinomial
° |f X&{1,...,k} has k states:

¢ Multinomial likelihood

P(D|0)=0{"06>...0,""

where 2. 6.=1,0.>0
@ Conjugate prior: Dirichlet distribution

1
P(@) — Dir(é’;al, .. .,Cvk) — E H@?i—l

* If observe D={m, 1s, m, 2s, ... m,_ks}, then

P60 | D) =Dir(0; a1 +mq,...,ar +myg)
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Parameter learning for CPDs

® Parameters P(X | Pay)

® Have one parameter ¢ for each value of parents pa,

X | pay
P(GXIPA,‘”U\\ = ’Dir(&'"' 'L“>
TD[@X\PO&"% L K[Ppy‘uN‘) P(G”(/Pox >ﬂ>

“(ocad ()awmwdrw n(\Jc,D@mlamce
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Parameter learning for BNs

® Each CPD P(X | Pay; 6 X|Pay ) has its own sets of
parameters P(HXIpa )

=» Dirichlet distribution

» Want to compute posterior over all parameters
P(0x,|Pax,s- -+ 0x,Pax, | D)

@ How can we do this??

® Crucial assumption: Prior ddgnbunon over
parameters factorizes ( garameter independence”)

P(9X1|Paxl RRRE 9Xn|PaXn) — H P(QXi|PaX'i>
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Parameter Independence

@ Assume

P(9X1|Paxl AR QX’rL'PaXn) — H P(9X73|Pax’i)

® Why useful?
® |If data is fully observed, then

P(0x,|pax,s---»0x.pax, | D) = ][ P(x,pax, | D)

® |.e., posterior still independent. Why??
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Meta-BN with parameters
Meta-BN Plate notation

D@

KO—O0w |0

—®

Meta BN contains one copy of original BN per data sample, and
one variable for each parameter

Under parameter-independences, data d-separates parameters
4/5’0; quvmoA_,M d. S‘c(’d/wvﬁc, CopicS o{ BWV: P(D, )({9) = P(D(é) p/)(Ié)



Bayesian learning of Bayesian Networks

® Specifying priors helps overfitting

® Do not commit to fixed parameter estimate, but maintain
distribution

® So far: Know how to specify priors over parameters
for fixed structure.

® Why should we commit to fixed structure??
® Fully Bayesian inference

P(X | D) x 3 P(G) [ Plla | 9)P(D] 6.06)P(X | D.G. 0g)ds

. prior over | (el hosd
G Pre- T (ﬁ”{j‘f g of

Shruckv :?(S([G,é‘é)
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Fully Bayesian inference

PX|D)x P ) [ P65 19)P(D | G.66)P(X | G.66)ds

® P(G): Prior over graphs

I = ¥ ]
* E.g.: P(G) = exp(-c Dim(G)) Diw () Tree

¢ Called “Bayesian Model Averaging”
® Hopelessly intractable for larger models
¢ Often: want to pick most likely structure:

G* = argmax P(G | D) = argmaxlog P(G) + log P(D | G)
g g
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Why do priors help overfitting?
P(D|9) = [ P(D|G.05)dP(0 | O)

® This Bayesian Score is tricky to analyze. Instead use:

logm

log P(D | G) ~ log P(D | G, 0g)

Dim(G)

® Why??
® Theorem: For Dirichlet priors, and for m—2> oo:

]
log P(D | G) — log P(D | G,05) — —2"

Dim(G) 4+ O(1)
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log
2

log P(D | G) =~ log P(D | gaé(;) = Dim(G)

® This approximation is known as Bayesian Information
Criterion (related to Minimum Description Length)

08 P(D | G) = m Y (T(X; Pay) —~ A(X1)) — 5™ Dim(G)

® Trades goodness-of-fit and structure complexity!
® Decomposes along families (computational efficiency!)
® Independent of hyperparameters! (Why??)
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Consistency of BIC

® Suppose true distribution has P-map G*

® A scoring function Score(G ; D) is called consistent, if,
as m = oo and probability = 1 over D:

® G* maximizes the score
® All non-l-equivalent structures have strictly lower score

¢ Theorem: BIC Score is consistent!

® Consistency requires m =2 co. For finite samples,
priors matter!
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Parameter priors

¢ How should we choose priors for discrete CPDs?

® Dirichlet (computational reasons). But how do we
specify hyperparameters??

@ K2 prior:
® FiX o
* P(fy Pax) = Dir(q,...,«)
¢ |s this a good choice?
& @ ©—=0
ROy Dieft ) P (6yx¢-) *Dir(d
3 Eqm\h S‘M(’(e fi3¢ P{G Yix :TB :'D'.f(&:og
PANY

=) Eguiv gonple 5024
& oA
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¢ Want to ensure “equivalent sample size” m’ is constant

® |dea:
® Define P’(X,...,X,)
For example: P’(X,,...,X.) = II. Uniform(Val(X.))
® Choose equivalent sample size m’

* Set A | pai =m’ P'(x;, pa)

Q@ (—

0(\/ = ol PU(y) :M‘?Pl[l,‘z) = U=
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Bayesian structure search

® Given consistent scoring function Score(G : D), want
to find to find graph G* that maximizes the score

® Finding the optimal structure is NP-hard in most
interesting cases (details in reading). ®

® Can find optimal tree/forest efficiently (Chow-Liu) ©

® Want practical algorithm for learning structure of
more general graphs..
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Local search algorithms

¢ Start with empty graph (better: Chow-Liu tree)
¢ |teratively modify graph by

® Edge addition

® Edge removal

® Edge reversal

¢ Need to guarantee acyclicity (can be checked
efficiently)

® Be careful with lI-equivalence (can search over
equivalence classes directly!)

¢ May want to use simulated annealing to avoid local
maxima
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Efficient local search

Scove (G—‘D\

¢ Want to avoid recomputing the score after each
modification!
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Score decomposability

® Proposition: Suppose we have
¢ Parameter independence

® Parameter modularity: if X has same parents in G, G, then
same prior.

® Structure modularity: P(G) is product over factors defined
over families (e.g.: P(G) = exp(-c|G|))

® Then Score(D : G) decomposes over the graph:
Score(G ; D) = 2. FamScore(X; | Pa;; D)

® |f G’ results from G by modifying a single edge, only
need to recompute the score of the affected families!!
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What you need to know

@ Conjugate priors
® Beta / Dirichlet
® Predictions, updating of hyperparameters

¢ Meta-BN encoding parameters as variables
® Choice of hyperparameters

® BDe prior
® Decomposability of scores and implications
@ Local search
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¢ Read Koller & Friedman Chapter 17.4, 18.3-5

® Project proposal due Monday Oct 19 (contact TAs or
instructor to discuss ideas)

¢ Homework 1 due Wednesday Oct 21
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