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Announcements
Recitations:  Every Tuesday 4-5:30 in 243 Annenberg

Homework 1 out. Due in class Wed Oct 21

Project proposals due Monday Oct 19
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Project proposal
At most 2 pages. One proposal per project

due Monday Oct 19

Please clearly specify

What is the idea of this project?

Who will be on the team?

What data will you use? Will you need time "cleaning up" 

the data?

What code will you need to write? What existing code are 

you planning to use?

What references are relevant? Mention 1-3 related papers.

What are you planning to accomplish by the Nov 9 

milestone?
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Project ideas
Ideally, do graphical model project related to your 

research (and, e.g., data that you’re working with)

Must be a new project started for the class!

Website has examples for

Project ideas

Data sets

Code
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Project ideas
All projects should involve using PGMs for some data 
set, and then doing some experiments

Learning related

Experiment with different algorithms for structure / parameter 
learning

Inference related

Compare different algorithms for exact or approximate 
inference

Algorithmic / decision making

Experiment with algorithms for value of information, MAP 
assignment, …

Application related

Attempt to answer interesting domain-related question using 
graphical modeling techniques
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Data sets
Some cool data sets made available specifically for this course!!
� Contact TAs to get access to data.

Exercise physiological data (collected by John Doyle’s group)

E.g., do model identification / Bayesian filtering

Fly data (by Pietro Perona and Michael Dickinson et al.)

“Activity recognition” – what are the patterns in fly behavior? Clustering / 
segmentation of trajectories?  

Urban challenge data (GPS data + LADAR + Vision) by Richard 
Murray et al.

Sensor fusion using DBNs; SLAM

JPL MER data by Larry Matthies et al.

Predict slip based on orbital imagery + GPS tracks

Segment images to identify dangerous areas for rover

LDPC decoding

Compare new approximate inference techniques with Loopy-BP

Other open data sets mentioned on course webpage
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Code
Libraries for graphical modeling by Intel, Microsoft, …

Toolboxes

computer vision image manipulations

Topic modeling

Nonparametric Bayesian modeling (Dirichlet processes / 

Gaussian processes / …)
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Learning general BNs

Missing data

Fully observable

Unknown structureKnown structure
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Algorithm for BN MLE
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Structure learning
Two main classes of approaches:

Constraint based

Search for P-map (if one exists):

Identify PDAG

Turn PDAG into BN (using algorithm in reading)

Key problem: Perform independence tests

Optimization based

Define scoring function (e.g., likelihood of data)

Think about structure as parameters

More common; can solve simple cases exactly
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MLE for structure learning
For fixed structure, can compute likelihood of data
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Decomposable score
Log-data likelihood

MLE score decomposes over families of the BN (nodes 

+ parents)

Score(G ; D) = ∑i FamScore(Xi | Pai; D)

Can exploit for computational efficiency!
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Finding the optimal MLE structure

Log-likelihood score:

Want G* = argmaxG Score(G ; D)

Lemma:  G ⊆ G’ � Score(G; D) ≤ Score(G’; D)
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Finding the optimal MLE structure

Optimal solution for MLE is always the fully 

connected graph!!! �

�Non-compact representation; Overfitting!!

Solutions:

Priors over parameters / structures (later)

Constraint optimization (e.g., bound #parents)
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Chow-Liu algorithm
For each pair Xi, Xj of variables compute

Compute mutual information 

Define complete graph with weight of edge (Xi,Xi) 

given by the mutual information

Find maximum spanning tree � skeleton

Orient the skeleton using breadth-first search
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Today: Bayesian learning
X Bernoulli variable

Which is better:

Observe 1 H and 2 T

Observe 10 H and 20 T

Observe 100 H and 200 T

MLE is same in all three cases

However, should be much more “confident” about 

MLE if we have more data

� Want to model distributions over parameters
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Bayesian learning
Make prior assumptions about parameters P(θ)

Compute posterior
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Bayesian Learning for Binomial

Likelihood function:

How do we choose prior?

Many possible answers…

Pragmatic approach:  Want computationally “simple”

(and still flexible) prior
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Conjugate priors
Consider parametric families of prior distributions:

P(θ) = f(θ; α)

α is called “hyperparameters” of prior

A prior P(θ) = f(θ; α) is called conjugate for a 

likelihood function P(D | θ) if P(θ | D) = f(θ; α’)

Posterior has same parametric form

Hyperparameters are updated based on data D

Obvious questions (answered later):

How to choose hyperparameters??

Why limit ourselves to conjugate priors??
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Conjugate prior for Binomial
Beta distribution
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Posterior for Beta prior
Beta distribution

Likelihood:

Posterior:
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Bayesian prediction
Prior P(θ) = Beta(αH,αT})

Suppose we observe D= {mH heads, and mT tails}

What’s P(X=H | D), i.e., prob. that next flip is heads?
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Prior = Smoothing

Where m’ = αH + αT, and γ = αH / m’

m’ is called “equivalent sample size”

� “hallucinated” coin flips

� Interpolate between MLE and prior mean
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Conjugate for multinomial
If X∈{1,…,k} has k states:

Multinomial likelihood 

where ∑i θi = 1, θi≥ 0

Conjugate prior: Dirichlet distribution

If observe D={m1 1s, m2 2s, … mk ks}, then
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Parameter learning for CPDs
Parameters P(X | PaX)

Have one parameter θX | paX
for each value of parents paX
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Parameter learning for BNs
Each CPD P(X | PaX; θX|PaX

) has its own sets of 

parameters P(θX|paX
)

� Dirichlet distribution

Want to compute posterior over all parameters 

How can we do this??

Crucial assumption: Prior distribution over 

parameters factorizes (“parameter independence”)
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Parameter Independence
Assume

Why useful?

If data is fully observed, then

I.e., posterior still independent.  Why?? 
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Meta-BN with parameters

Meta BN contains one copy of original BN per data sample, and 
one variable for each parameter

Under parameter-independences, data d-separates parameters 

X(1) Y(1)

θX θY|X

X(2) Y(2)

X(m) Y(m)

X(i) Y(i)

θX θY|X

i

Plate notationMeta-BN
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Bayesian learning of Bayesian Networks

Specifying priors helps overfitting

Do not commit to fixed parameter estimate, but maintain 

distribution

So far:  Know how to specify priors over parameters 

for fixed structure.

Why should we commit to fixed structure??

Fully Bayesian inference
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Fully Bayesian inference

P(G): Prior over graphs

E.g.: P(G) = exp(-c Dim(G))

Called “Bayesian Model Averaging”

Hopelessly intractable for larger models

Often: want to pick most likely structure:
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Why do priors help overfitting?

This Bayesian Score is tricky to analyze. Instead use:

Why?? 

Theorem: For Dirichlet priors, and for m�∞:
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BIC score

This approximation is known as Bayesian Information 

Criterion (related to Minimum Description Length)

Trades goodness-of-fit and structure complexity!

Decomposes along families (computational efficiency!)

Independent of hyperparameters! (Why??)
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Consistency of BIC
Suppose true distribution has P-map G*

A scoring function Score(G ; D) is called consistent, if, 

as m �∞ and probability � 1 over D:

G* maximizes the score

All non-I-equivalent structures have strictly lower score

Theorem: BIC Score is consistent!

Consistency requires m �∞.  For finite samples, 

priors matter!
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Parameter priors
How should we choose priors for discrete CPDs?

Dirichlet (computational reasons).  But how do we 

specify hyperparameters??

K2 prior:

Fix α

P(θX | PaX
) = Dir(α,…,α)

Is this a good choice?
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BDe prior
Want to ensure “equivalent sample size” m’ is constant

Idea: 

Define P’(X1,…,Xn)

For example: P’(X1,…,Xn) = ∏i Uniform(Val(Xi))

Choose equivalent sample size m’

Set αxi | pai
= m’ P’(xi, pai)
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Bayesian structure search
Given consistent scoring function Score(G : D), want 

to find to find graph G* that maximizes the score

Finding the optimal structure is NP-hard in most 

interesting cases (details in reading). �

Can find optimal tree/forest efficiently (Chow-Liu) ☺

Want practical algorithm for learning structure of 

more general graphs..
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Local search algorithms
Start with empty graph (better: Chow-Liu tree)

Iteratively modify graph by

Edge addition

Edge removal

Edge reversal

Need to guarantee acyclicity (can be checked 

efficiently)

Be careful with I-equivalence (can search over 

equivalence classes directly!)

May want to use simulated annealing to avoid local 

maxima
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Efficient local search

Want to avoid recomputing the score after each 

modification!
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Score decomposability
Proposition: Suppose we have

Parameter independence

Parameter modularity: if X has same parents in G, G’, then 

same prior. 

Structure modularity:  P(G) is product over factors defined 

over families (e.g.: P(G) = exp(-c|G|))

Then Score(D : G) decomposes over the graph:

Score(G ; D) = ∑i FamScore(Xi | Pai; D)

If G’ results from G by modifying a single edge, only 

need to recompute the score of the affected families!!
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What you need to know
Conjugate priors 

Beta / Dirichlet

Predictions, updating of hyperparameters

Meta-BN encoding parameters as variables

Choice of hyperparameters

BDe prior

Decomposability of scores and implications

Local search
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Tasks
Read Koller & Friedman Chapter 17.4, 18.3-5

Project proposal due Monday Oct 19 (contact TAs or 

instructor to discuss ideas)

Homework 1 due Wednesday Oct 21 


