Probabilistic Graphical Models

Lecture 4 - Learning Bayesian Networks

CS/CNS/EE 155
Andreas Krause

Announcements

- Another TA: Hongchao Zhou
- Please fill out the questionnaire about recitations
- Homework 1 out. Due in class Wed Oct 21
- Project proposals due Monday Oct 19

Representing the world using BNs

True distribution P^{\prime}
with cond. ind. $1\left(\mathrm{P}^{\prime}\right)$

Bayes net (G, P) with I(P)

- Want to make sure that $I(P) \subseteq I\left(P^{\prime}\right)$
- Need to understand Cl properties of BN (G,P)

Factorization Theorem

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

G is an I-map of P
(independence map)

True distribution P can be represented exactly as Bayesian network (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Additional conditional independencies

- BN specifies joint distribution through conditional parameterization that satisfies Local Markov Property $\mathrm{I}_{\mathrm{loc}}(\mathrm{G})=\left\{\left(\mathrm{X}_{\mathrm{i}} \perp\right.\right.$ Nondescendants $\left.\left.\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)\right\}$
- But we also talked about additional properties of Cl
- Weak Union, Intersection, Contraction, ...
- Which additional CI does a particular BN specify?
- All CI that can be derived through algebraic operations

$$
\rightarrow \text { proving } \mathrm{Cl} \text { is very cumbersome!! }
$$

Is there an easy way to find all independences of a BN just by looking at its graph??

Examples

$$
\begin{aligned}
& A \perp F \\
& A \perp F K \\
& A \perp F \mid C, D \times
\end{aligned}
$$

Active trails

- An undirected path in BN structure G is called active trail for observed variables $\mathbf{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$, if for every consecutive triple of vars X, Y, Z on the path
- $X \rightarrow Y \rightarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
- $X \leftarrow Y \leftarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
- $X \leftarrow Y \rightarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
- $X \rightarrow Y \leftarrow Z$ and Y or any of Y 's descendants is observed
- Any variables X_{i} and X_{j} for which \nexists active trail for observations \mathbf{O} are called d-separated by \mathbf{O} We write d-sep($\mathbf{X}_{\mathbf{i}} ; \mathbf{X}_{\mathbf{j}} \mid \mathbf{O}$)
- Sets \mathbf{A} and \mathbf{B} are d-separated given \mathbf{O} if $d-\operatorname{sep}(X, Y \mid \mathbf{O})$ for all $X \in A, Y \in B$. Write $\mathbf{d}-\operatorname{sep}(A ; B \mid O)$

Soundness of d-separation

- Have seen: P factorizes according to $G \Leftrightarrow I_{\text {loc }}(G) \subseteq I(P)$
- Define I(G) $=\{(X \perp Y \mid Z)$: d-sep $(X ; Y \mid Z)\}$
- Theorem: Soundness of d-separation P factorizes over $G \rightarrow I(G) \subseteq I(P)$
- Hence, d-separation captures only true independences
- How about $\mathrm{I}(\mathrm{G})=\mathrm{I}(\mathrm{P})$?

Completeness of d-separation

- Theorem: For "almost all" distributions P that factorize over G it holds that $\mathbf{I}(\mathbf{G})=\mathbf{I}(\mathbf{P})$
- "almost all": except for a set of distributions with measure 0 , assuming only that no finite set of distributions has measure > 0

Algorithm for d-separation

- How can we check if $\mathrm{X} \perp \mathrm{Y} \mid \mathrm{Z}$?
- Idea: Check every possible path connecting X and Y and verify conditions
- Exponentially many paths!!! :
- Linear time algorithm:

Find all nodes reachable from X

- 1. Mark Z and its ancestors
- 2. Do breadth-first search starting
 from X; stop if path is blocked
- Have to be careful with implementation details (see reading)

Representing the world using BNs

True distribution P^{\prime} with cond. ind. $I\left(P^{\prime}\right)$

Bayes net (G,P) with I(P)

- Want to make sure that $I(P) \subseteq I\left(P^{\prime}\right)$
- Ideally: I(P) = I(P')
- Want BN that exactly captures independencies in P^{\prime} !

Minimal I-map

- Graph G is called minimal I-map if it's an I-map, and if any edge is deleted \rightarrow no longer I-map.

Uniqueness of Minimal I-maps

- Is the minimal I-Map unique?

Perfect maps

- Minimal I-maps are easy to find, but can contain many unnecessary dependencies.
- A BN structure G is called P-map (perfect map) for distribution P if $I(G)=I(P)$
- Does every distribution P have a P-map?

I-Equivalence

- Two graphs G, G' are called I-equivalent if $I(G)=I\left(G^{\prime}\right)$
- I-equivalence partitions graphs into equivalence classes

$$
\begin{aligned}
& (x) \rightarrow(\theta) \rightarrow(2) \\
& \otimes \in(y) \in(z) \\
& \otimes \in(\theta) \rightarrow(2)
\end{aligned}
$$

Skeletons of BNs

- I-equivalent BNs must have same skeleton

Immoralities and I-equivalence

- A V-structure $X \rightarrow Y \leftarrow Z$ is called immoral if there is no edge between X and Z ("unmarried parents")

- Theorem: $I(G)=I\left(G^{\prime}\right) \Leftrightarrow G$ and G^{\prime} have the same skeleton and the same immoralities.

Today: Learning BN from data

- Want P-map if one exists
- Need to find
- Skeleton
- Immoralities

Identifying the skeleton

- When is there an edge between X and Y ?

- When is there no edge between X and Y ?

$$
\Leftrightarrow \exists u \subset\left\{l_{1} \ldots x_{m}\right\} \backslash\{x, y\}: x+y \mid u
$$

(Local Markov assumption)

Algorithm for identifying the skeleton

Set G to be complete graph
For every pair $X_{1} y \in G$
For every $u \subset\left\{x_{1} \ldots x_{\sim}\right\} \backslash\{x, y\}$
If $x \perp y \mid u$ then remove edge between x, y

Not necessan'ly practical...

Identifying immoralities

- When is $\mathrm{X}-\mathrm{Z}-\mathrm{Y}$ an immorality?

$$
7(x+x)(z)
$$

- Immoral \Leftrightarrow for all $\mathbf{U}, \mathrm{Z} \in \mathbf{U}: \neg(\mathrm{X} \perp \mathrm{Y} \mid \mathbf{U})$

From skeleton \& immoralities to BN Structures

- Represent I-equivalence class as partially-directed acyclic graph (PDAG)

- How do I convert PDAG into BN?

Have to be careful when orienting edges to avoid cycles
Poly time aldo in reading

Testing independence

- So far, assumed that we know I(P’), ie., all independencies associated with true dist. P^{\prime}
- Often, access to P' only through sample data (e.g., sensor measurements, etc.)
- Given vars X, Y, Z, want to test whether $X \perp Y \mid Z$

$$
\begin{aligned}
& x \perp y \mid z \Leftrightarrow I(x ; y \mid z)=\sigma \\
& \quad \sum_{z} \sum_{x y} \rho(x, y z) \log \frac{p(x, y) \mid z)}{\rho(x, z) \rho(y \mid z)} \\
& \text { Estimate } p(x, y, z) \text { from data } \Rightarrow \hat{\rho}(x, y, z) \\
& \text { Compute } \hat{I}\left(x ; y(z)=\sum_{x y z} \hat{\rho}(x, y, z) \log \frac{\tilde{p}(x, y \mid z)}{\hat{\rho}(x \mid z) \hat{\rho}(y(z)}\right. \\
& \text { Test whether } \hat{I}(x ; y \mid z)<\varepsilon
\end{aligned}
$$

Next topic: Learning BN from Data

- Two main parts:
- Learning structure (conditional independencies)
- Learning parameters (CPDs)

Parameter learning

- Suppose X is Bernoulli distribution (coin flip) with unknown parameter $\mathrm{P}(\mathrm{X}=\mathrm{H})=\theta$.
- Given training data $\mathrm{D}=\left\{\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(\mathrm{m})}\right\}$ (egg., HHTHHHTTHTHHH..) how do we estimate θ ?

$$
\begin{aligned}
P(D \mid \theta) & =\theta^{n_{H}} \cdot(1-\theta)^{n_{T}} \\
n_{H} & =\text { A of } H \text { ind } \\
n_{T} & =--T-
\end{aligned}
$$

$$
\begin{aligned}
\hat{\theta}=\underset{\theta}{\operatorname{armmax}} P(D \mid \theta) & =\underset{\theta}{\operatorname{argma}} \log P(D(\theta) \\
& =\underset{\theta}{\operatorname{argmax}} n_{H} \log \theta+n_{T} \log (1-\theta)
\end{aligned}
$$

$$
\text { want } \frac{d \log P(0(\theta)}{d \theta}=0 \text {. }
$$

Maximum Likelihood Estimation

- Given: data set D
- Hypothesis: data generated i.i.d. from binomial distribution with $\mathrm{P}(\mathrm{X}=\mathrm{H})=\theta$
- Optimize for θ which makes D most likely:

Solving the optimization problem

$$
\begin{aligned}
\log P(D(\theta) & =n_{H} \log \theta+n_{T} \log (1-\theta) \\
\frac{d}{d \theta}-r & =\frac{n_{H}}{\theta}-\frac{n_{T}}{1-\theta}=0 \\
n_{H}(1-\theta) & =n_{T} \theta \\
n_{H} & =\theta\left(n_{T}+n_{H}\right) \\
\Rightarrow \hat{\theta} & =\frac{n_{H}}{n_{T}+n_{H}}=\frac{n_{H}}{m} \\
& =\frac{\operatorname{Cocont}(X=H)}{m}
\end{aligned}
$$

Learning general BNs

	Known structure	Unknown structure
Fully observable	Easy \because	hard 2.
Missing data	hard 3. (EM)	very hand (last)

Estimating CPD

- Given data $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ of samples from X, Y, want to estimate $P(X \mid Y)$

$$
\begin{gathered}
P(X=x \mid Y=y)=\theta_{x \mid y} \\
\hat{\theta}_{x \mid y} \stackrel{\text { ME }}{=} \frac{\operatorname{Cont}(x, y)}{\operatorname{Count}(y)} \\
\hat{P}(x, y)=\frac{\operatorname{Cont}(x, y)}{m} \\
\tilde{p}(y)=\frac{\operatorname{Cont}(y)}{m} \\
\hat{\theta}_{x / y}=\frac{\hat{P}(x, y)}{\hat{P}(y)}
\end{gathered}
$$

MLE for Bayes nets

$$
\begin{aligned}
& \log P(D \mid \theta)=\log \prod_{l} \prod_{i} P\left(x_{i}^{(l)} \mid P_{a_{i}}^{(l)} ; \theta\right) \\
& =\sum_{l} \sum_{i} \log P\left(x_{i}^{(l)} \mid P_{a}^{(l)} ; \theta_{x_{i}\left(P a_{i}\right.}\right)^{\downarrow} \begin{array}{c}
\text { Paramector } \\
\text { indepart }
\end{array} \\
& \frac{\partial}{\partial \theta_{x_{i}} \mid P_{\alpha_{i}}} \log P(D \mid \theta)=\sum_{j} \sum_{l} \frac{\partial}{\partial \theta_{x_{i}}\left(P_{\mu_{i}}\right.} \log P\left(X _ { j } ^ { (l) } \left(\rho_{a_{j}}^{(l)} ; \theta_{x_{j}}\left(\rho_{j}\right)\right.\right. \\
& =\sum_{i} \frac{\partial}{\partial \theta_{x_{i}}\left(\rho_{x_{i}}\right.} \log P\left(X_{i}^{(l)}\left|\rho_{a_{i}}, \theta_{x_{i}}\right| \rho_{a_{i}}\right) \stackrel{1}{=} 0
\end{aligned}
$$

Problem breaks down into ind pend t subprodolano Learn every CPD indepund of others

Algorithm for BN MLE
Given BN structure G
For each variable X_{i}

$$
\text { lean } \hat{\theta}_{x_{i} \mid \rho a_{i}}=\frac{\operatorname{Cont}\left(x_{i}, \rho a_{i}\right)}{\operatorname{Cont}\left(\rho a_{i}\right)}
$$

\Rightarrow globally maximum likelihood estimate for fixed structure G

Learning general BNs

	Known structure	Unknown structure
Fully observable	Easy!(:) Gt CPD s by Counting (for M(E)	$? ? ?$
Missing data	Hard (EM)	Very hard (later)

Structure learning

- Two main classes of approaches:
- Constraint based
- Search for P-map (if one exists):
- Identify PDAG
- Turn PDAG into BN (using algorithm in reading)
- Key problem: Perform independence tests
- Optimization based com ing ap!
- Define scoring function (e.g., likelihood of data)
- Think about structure as parameters
- More common; can solve simple cases exactly

MLE for structure learning

- For fixed structure, can compute likelihood of data

$$
\begin{aligned}
& \log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)=\sum_{\ell} \sum_{i} \log P\left(X_{i}=x_{i}^{(\ell)} \mid \mathbf{P a}_{i}=\mathbf{p a}_{i}^{(\ell)} \gamma \theta_{G} ; G\right) \\
& \stackrel{M C E}{=} \sum_{i} \sum_{x_{i}} \sum_{\rho a_{i}} \operatorname{Count}\left(x_{i}, \rho a_{i}\right) \log \frac{\hat{p}\left(x_{i}, \rho a_{i}\right)}{\hat{p}\left(p a_{i}\right)} \\
& \left.=m \sum_{i} \sum_{x_{i} \rho a_{i}} \sum_{\substack{ \\
p \\
x_{i}}} \rho a_{i}\right) \log \frac{\hat{p}\left(x_{i}, \rho a_{i}\right) \hat{p}\left(x_{i}\right)}{\hat{p}\left(\rho a_{i}\right) \hat{p}\left(y_{i}\right)} \\
& =m \sum_{i} \sum_{x_{i} \rho a_{i}} \sum_{\rho}\left(x_{i}, \rho a_{i}\right) \log \frac{\hat{p}\left(x_{i}, \rho a_{i}\right)}{\hat{p}\left(x_{i}\right) \rho\left(\rho a_{i}\right)}+m \sum_{i} \sum_{x_{i}} \sum_{\rho a_{i}} \hat{p}\left(y_{i}, \rho a_{i}\right) \log \hat{p}\left(x_{i}\right) \\
& =m \sum_{i} \hat{I}\left(X_{i} i P a_{i}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)
\end{aligned}
$$

Decomposable score

- Log-data likelihood

$$
\log \widehat{P}\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)=m \sum_{i} \widehat{I}\left(X_{i}, \mathbf{P} \mathbf{a}_{i}\right)-m \underbrace{\sum_{i} \widehat{H}\left(X_{i}\right)}_{\substack{\text { independut of graph } \\ \text { Structure? }}}
$$

- MLE score decomposes over families of the BN (nodes + parents)
- Score(G ; D) $=\sum_{i}$ FamScore ($\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{i}}$; D)
- Can exploit for computational efficiency!

Finding the optimal MLE structure

- Log-likelihood score:

$$
\operatorname{Score}(\mathcal{G} ; \mathcal{D})=\sum_{i} \widehat{I}\left(X_{i}, \mathbf{P a}_{i}\right)
$$

- Want G* $=\operatorname{argmax}_{G} \operatorname{Score}(\mathrm{G}$; D)
- Lemma: $\mathrm{G} \subseteq \mathrm{G}^{\prime} \rightarrow \operatorname{Score}(\mathrm{G} ; \mathrm{D}) \leq \operatorname{Score}\left(\mathrm{G}^{\prime} ; \mathrm{D}\right)$

Complete graph naximises log data likethood!
"Information never huts"

$$
\begin{aligned}
& \operatorname{RV} x, A \subset B \\
& H(x \mid A) \geq H(x \mid B) \\
& I(x ; A)=H(x) H(x \mid A) \\
& \Rightarrow \\
& \\
& I(x ; B) \geq I(x ; A)
\end{aligned}
$$

Finding the optimal MLE structure

- Optimal solution for MLE is always the fully connected graph!!! :
\rightarrow Non-compact representation; Overfitting!!
- Solutions:
- Priors over parameters / structures (later)
- Constraint optimization (e.g., bound \#parents)

Constraint optimization of BN structures

- Theorem: for any fixed $\mathrm{d} \geq 2$, finding the optimal BN (w.r.t. MLE score) is NP-hard
- What about $\mathrm{d}=1$??
- Want to find optimal tree!

Finding the optimal tree BN

- Scoring function

$$
\operatorname{Score}(\mathcal{G} ; \mathcal{D})=\sum_{i} \widehat{I}\left(X_{i}, \mathbf{P a}_{i}\right)
$$

- Scoring a tree

$$
\begin{aligned}
& \theta \rightarrow \otimes \rightarrow(z) \\
& \hat{I}(z ; \psi)+\hat{I}(y ; x) \\
& \underset{\substack{\text { same } \\
\text { sore }} \underset{(z)}{(z)} \hat{I}(x ; y)+\hat{I}(z ; y))}{\otimes} \\
& b / c=I(x, y)=I(y, x)
\end{aligned}
$$

Sane shelotor \Rightarrow same score

Finding the optimal tree skeleton

- Can reduce to following problem:
- Given graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and nonnegative weights w_{e} for each edge $e=\left(X_{i}, X_{j}\right)$
- In our case: $\mathrm{w}_{\mathrm{e}}=1\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$
- Want to find tree $T \subseteq E$ that maximizes $\sum_{e \in T} W_{e}$
- Maximum spanning tree problem!
- Can solve in time $O(|E| \log |E|)$!

Chow-Liu algorithm

- For each pair $\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}$ of variables compute

$$
\widehat{P}\left(x_{i}, x_{j}\right)=\frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

- Compute mutual information

$$
\widehat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \widehat{P}\left(x_{i}, x_{j}\right) \log \frac{\widehat{P}\left(x_{i}, x_{j}\right)}{\widehat{P}\left(x_{i}\right) \widehat{P}\left(x_{j}\right)}
$$

- Define complete graph with weight of edge $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)$ given by the mutual information
- Find maximum spanning tree \rightarrow skeleton
- Orient the skeleton using breadth-first search

Generalizing Chow-Liu

- Tree-augmented Naïve Bayes Model [Friedman '97]
- If evidence variables are correlated, Naïve Bayes models can be overconfident
- Key idea: Learn optimal tree for conditional distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \mid \mathrm{Y}\right)$
- Can do optimally using Chow-Liu (homework! ©)

Tasks

- Subscribe to Mailing list https://utils.its.caltech.edu/mailman/listinfo/cs155
- Select recitation times
- Read Koller \& Friedman Chapter 17.1-17.3, 18.1-2, 18.4.1
- Form groups and think about class projects. If you have difficulty finding a group, email Pete Trautman

