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Announcements

¢ Another TA: Hongchao Zhou

¢ Please fill out the questionnaire about recitations
® Homework 1 out. Due in class Wed Oct 21

® Project proposals due Monday Oct 19



Representing the world using BNs

True distribution P’
with cond. ind. I(P’)

with |(P)

® Want to make sure that I[(P) C I(P’)
® Need to understand Cl properties of BN (G,P)



Factorization Theorem

True distribution P
can be represented exactly as
G is an I-map of P Bayesian network (G,P)

(independence map) P(X1,..,X,) = [[ P(X; | Pay,)




Additional conditional independencies

® BN specifies joint distribution through conditional

parameterization that satisfies Local Markov Property
loc(G) ={(X; L Nondescendantsy | Paxi)}

® But we also talked about additional properties of Cl
¢ Weak Union, Intersection, Contraction, ...

® Which additional Cl does a particular BN specify?

® All Cl that can be derived through algebraic operations

=>» proving Cl is very cumbersome!!

Is there an easy way to find all independences
of a BN just by looking at its graph??
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Active trails

¢ An undirected path in BN structure G is called
active trail for observed variables O C {X,,...,X_}, if for
every consecutive triple of vars X,Y,Z on the path
® X—2>Y—>ZandYisunobserved (Y ¢ O)
e X &Y< ZandYisunobserved (Y ¢ O)
X< Y—>ZandYisunobserved (Y ¢ O)
* X 2> Y < ZandY or any of Y’s descendants is observed

® Any variables X; and X; for which B active trail for
observations O are called d-separated by O
We write d-sep(X;;X; | O)

¢ Sets A and B are d-separated given O if d-sep(X,Y | O)
for all XeA, YEB. Write d-sep(A; B | O)



Soundness of d-separation

® Have seen: P factorizes according to G < [,,.(G)C I(P)
® Define I(G) = {(X L Y | Z): d-seps(X;Y |2)}

¢ Theorem: Soundness of d-separation
P factorizes over G =» I(G) C I(P)

® Hence, d-separation captures only true
independences

¢ How about I(G) = I(P)?



Completeness of d-separation

® Theorem: For “almost all” distributions P that
factorize over G it holds that I(G) = I(P)
* “almost all”: except for a set of distributions with measure

0, assuming only that no finite set of distributions has
measure >0



Algorithm for d-separation

® How can we checkif X LY | Z?

® |dea: Check every possible path connecting X and Y and
verify conditions

¢ Exponentially many paths!!! ®

® Linear time algorithm:
Find all nodes reachable from X
¢ 1. Mark Z and its ancestors

® 2. Do breadth-first search starting
from X; stop if path is blocked

® Have to be careful with implementation details (see
reading)
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Representing the world using BNs

True distribution P’ e e
with cond. ind. I(P") Bayes net (G,P)
with I(P)

® Want to make sure that I(P) C I(P’)
® |deally: I(P) = I(P’)
¢ Want BN that exactly captures independencies in P’!
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Minimal I-map

® Graph G is called minimal I-map if it’s an I-map, and if
any edge is deleted =» no longer I-map.
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Uniqueness of Minimal I-maps

® |s the minimal I-Map unique?
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® Minimal I-maps are easy to find, but can contain
many unnecessary dependencies.

@ A BN structure G is called P-map (perfect map) for

distribution P if I{G) = I(P)
® Does every distribution P have a P-map?
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l-Equivalence

® Two graphs G, G’ are called I-equivalent if I(G) = |(G’)
¢ |-equivalence partitions graphs into equivalence

classes
Ge© 6
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Skeletons of BNs

¢ |-equivalent BNs must have same skeleton
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Immoralities and |-equivalence

® A V-structure X 2 Y €< Zis called immoral if there is
no edge between X and Z (“unmarried parents”)
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® Theorem: [(G) =1(G’) & G and G’ have the same
skeleton and the same immoralities.
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Today: Learning BN from data

® Want P-map if one exists

¢ Need to find
@ Skeleton

¢ Immoralities
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ldentifying the skeleton

¢ When is there an edge between X and Y?

e a(1v) T X £ (KLY [ ety et)
I W RN €2 X
LA B

® When is there no edge between X and Y?
e Fuc Lo AS\Exyy o ko Lylu

((,ocd I"\omLcov “NM/’HM)
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Algorithm for identifying the skeleton
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ldentifying immoralities

® WhenisX—Z-Y an |mmoraI|t_>/@

1(Keyle) @K/

¢ Immoral & forallU,ZeU: = (X_LY | U)
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From skeleton & immoralities to BN Structures

@ Represent |-equivalence class as partially-directed
acyclic graph (PDAG)

O—OT=9—,
%
\O/
@ How do | convert PDAG into BN?

H-m.\,e"'o ‘oe CMN wAtom 0)1‘6»‘4,'257 eQ/?e.j
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Testing independence

® So far, assumed that we know I(P’), i.e., all
independencies associated with true dist. P’

® Often, access to P’ only through sample data (e.g.,
sensor measurements, etc.)

® Givenvars X, Y, Z, want to test whether X L Y | Z
X1vy(lz & I(X y [2) =0"
2 (?["1‘3% » PY. ﬂi‘)

s % pEl2)rh )
Ey{{m'\*}(‘c F(Kc’)t?) f\""”" "J"qLoL = P[j(lgl ) A

N . B " P[‘(l?’(Z)
&M(»\/H I(’(/ \/[f) = ,e%}} pléy2) [7 Flelz) s3)
Terd vhefle T(xpyle) <€
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Next topic: Learning BN from Data

¢ Two main parts:

® Learning structure (conditional independencies)

® Learning parameters (CPDs)
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Parameter learning

@ Suppose X is Bernoulli distribution (coin flip) with
unknown parameter P(X=H) =6.

® Given training data D = {x(1),...,x(m)}
(e.g, HHTHHHTTHTHHH..) how do we estimate 6?

(D= 0 (-6
m .« Foft H W)
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Maximum Likelihood Estimation

¢ Given: datasetD

¢ Hypothesis: data generated i.i.d. from binomial
distribution with P(X =H) =6

® Optimize for 8 which makes D most likely:
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Solving the optimization problem

L7 PID(E) = m, Lry 6 + e [ (1-0)
A ¢

L _ MH — LAI_.,/
as — 5 " i

-) _/_l - _ﬁ— = &'-
- M iy w
(ow‘f (X’q)
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Learning general BNs

Known structure Unknown structure

Fully observable

E"EI ‘" bord 2.
Missing data b, 3 /Em) very bad ()
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Estimating CPDs

® Given data D = {(x4,Y4),---,(X,,y,)} of samples from XY,
want to estimate P(X | Y)

[X ¥ [\/ ?\ xly
é" ree (ow}/["‘?)
Fly = Coud (3)
(;( ?) _ Co-mff'[( )
sy Cestla)
N P[Clﬂ

o
—

2ty p ()
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MLE for Bayes nets

Ly P(018) = Ly T TT O(yf‘? e /6) ko
? X @P{X (XY i)

Prblom lbreaks Qém/w e tmcéfe\iff'&a@m{o[aw
[eom ey CPD molw o ofts
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Algorithm for BN MLE

Gien BV shruchee &

o~ CQOL‘- VM"J)&, X’f
(town O . Cowt (K cpor)
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Learning general BNs

Known structure Unknown structure
Fully observable Easy! © ???
Gt P s oy Coumhins,
(G~ ((CE)

Missing data Hard (EM) Very hard (later)
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Structure learning

¢ Two main classes of approaches:

@ Constraint based

—_— ———
® Search for P-map (if one exists):
® |dentify PDAG

® Turn PDAG into BN (using algorithm in reading)

¢ Key problem: Perform independence tests

* Optimizationhased . @ i ep
® Define scoring function (e.g., likelihood of data)

® Think about structure as parameters
® More common; can solve simple cases exactly
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MLE for structure learning

® For fixed structure, can compute likelihood of data

log P(D | 65,G) = Z Z log P(X; = xz(f) | Pa; = page)} 963 ; 5’)

ME . S (x: P2 )

— (oM:F{}(‘ ‘fﬁ.‘_B ED (IX, [

? ? %: by Plpai)

= m 2] ? 2 P( (M\ da? P/(‘S/;czo”‘ijj”k)
i % pa p ( [’4[) IOZVJ
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> Mﬂf K i Pal) = o D H(X)

34



Decomposable score

¢ |og-data likelihood
log P(D | 0g,G) =m > _I(X;,Pa;) — mZﬁf

g

® MLE score decomposes over families of the BN (nodes
+ parents)

® Score(G ; D) = 2. FamScore(X. | Pa;; D)

® Can exploit for computational efficiency!
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Finding the optimal MLE structure

® Log-likelihood score:

Score(G; D) = Z I(X;, Pa;)

® Want G = argmax Score(G ; D)
® Lemma: G C G’ =» Score(G; D) < Score(G’; D)
I q/nﬁ"‘"’“’-%;ﬂ never h""ﬁl/
Complte g pd | RV % AcB
wiay  fm dade ((ebood
e " H<1A) 2z t(% [ B)
T(X;A)=H(\ X [4)
= fiB) 2 T A)
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Finding the optimal MLE structure

® Optimal solution for MLE is always the fully
connected graph!!! ®
> Non-compact representation; Overfitting!!

@ Solutions:
® Priors over parameters / structures (later)
® Constraint optimization (e.g., bound #parents)
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Constraint optimization of BN structures

® Theorem: for any fixed d > 2, finding the optimal BN
(w.r.t. MLE score) is NP-hard

¢ What about d=177

¢ Want to find optimal tree!
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Finding the optimal tree BN

@ Scoring function

Score(G; D) = Z IA(Xz', Pa;)

7

@ Scoring a tree
v@—b@—)@ _ S
Iz «Tli¥) % © @
wee I(Xe9)= Ly %)
Some ghlekn = game Scor

T(<;5) <3z
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Finding the optimal tree skeleton

® Can reduce to following problem:

® Given graph G = (V,E), and nonnegative weights w, for
each edge e=(X; X))

® In our case: w, = I(X;,X))

® Want to find tree TC E that maximizes 2.1 W,
¢® Maximum spanning tree problem!

® Cansolve in time O(|E| log |E])!
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Chow-Liu algorithm

® For each pair X;, X; of variables compute

ﬁ(a:i,atj) _ Count(x;, ;)

m

® Compute mutual information

~ P(z;, ;)
I XMX P 79 I =~ St

()= 2 P08 by

¢ Define complete graph with weight of edge (X, X.)

given by the mutual information

® Find maximum spanning tree =» skeleton
@ Orient the skeleton using breadth-first search
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Generalizing Chow-Liu

¢ Tree-augmented Naive Bayes Model [Friedman ’97]

¢ |If evidence variables are correlated, Naive Bayes
models can be overconfident

¢ Key idea: Learn optimal tree for conditional
distribution P(X,,...,.X,, | Y)

® Can do optimally using Chow-Liu (homework! ©)
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@ Subscribe to Mailing list
https://utils.its.caltech.edu/mailman/listinfo/cs155

@ Select recitation times

¢ Read Koller & Friedman Chapter 17.1-17.3, 18.1-2,
18.4.1

® Form groups and think about class projects. If you
have difficulty finding a group, email Pete Trautman
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