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Announcements
Another TA: Hongchao Zhou

Please fill out the questionnaire about recitations

Homework 1 out. Due in class Wed Oct 21

Project proposals due Monday Oct 19
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Representing the world using BNs

Want to make sure that  I(P) ⊆ I(P’)

Need to understand CI properties of BN (G,P) 
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True distribution P’

with cond. ind. I(P’) Bayes net (G,P)
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Factorization Theorem
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Iloc(G) ⊆ I(P)
True distribution P

can be represented exactly as

Bayesian network (G,P)G is an I-map of P

(independence map)
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Additional conditional independencies

BN specifies joint distribution through conditional 

parameterization that satisfies Local Markov Property

Iloc(G) = {(Xi ⊥ NondescendantsXi
| PaXi

)}

But we also talked about additional properties of CI

Weak Union, Intersection, Contraction, …

Which additional CI does a particular BN specify?

All CI that can be derived through algebraic operations

� proving CI is very cumbersome!!

Is there an easy way to find all independences 

of a BN just by looking at its graph??
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Examples
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Active trails
An undirected path in BN structure G is called 
active trail for observed variables O⊆ {X1,…,Xn}, if for 
every consecutive triple of vars X,Y,Z on the path

X � Y � Z and Y is unobserved (Y ∉ O)

X  Y  Z and Y is unobserved (Y ∉ O)

X  Y � Z and Y is unobserved (Y ∉ O)

X � Y  Z and Y or any of Y’s descendants is observed

Any variables Xi and Xj for which � active trail for 

observations O are called d-separated by O
We write d-sep(Xi;Xj | O)

Sets A and B are d-separated given O if d-sep(X,Y |O) 
for all X∈A, Y∈B.  Write d-sep(A; B | O)
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Soundness of d-separation
Have seen:  P factorizes according to G � Iloc(G)⊆ I(P)

Define I(G) = {(X ⊥ Y | Z): d-sepG(X;Y |Z)}

Theorem:  Soundness of d-separation

P factorizes over G � I(G) ⊆ I(P)

Hence, d-separation captures only true 
independences

How about I(G) = I(P)?
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Completeness of d-separation
Theorem:  For “almost all” distributions P that 

factorize over G it holds that I(G) = I(P)

“almost all”: except for a set of distributions with measure 

0, assuming only that no finite set of distributions has 

measure > 0
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Algorithm for d-separation
How can we check if X ⊥ Y | Z?

Idea:  Check every possible path connecting X and Y and 

verify conditions

Exponentially many paths!!! �

Linear time algorithm:

Find all nodes reachable from X

1. Mark Z and its ancestors

2. Do breadth-first search starting

from X; stop if path is blocked

Have to be careful with implementation details (see 

reading)
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Representing the world using BNs

Want to make sure that  I(P) ⊆ I(P’)

Ideally: I(P) = I(P’)

Want BN that exactly captures independencies in P’!

s
1 s

2 s
3

s
4

s
5 s

7
s
6

s
11

s
12

s
9 s

10

s
8

s
1 s

3

s
12

s
9

True distribution P’

with cond. ind. I(P’) Bayes net (G,P)

with  I(P)

represent



12

Minimal I-map
Graph G is called minimal I-map if it’s an I-map, and if 

any edge is deleted � no longer I-map.
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Uniqueness of Minimal I-maps
Is the minimal I-Map unique?
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Perfect maps
Minimal I-maps are easy to find, but can contain 

many unnecessary dependencies.

A BN structure G is called P-map (perfect map) for 

distribution P if I(G) = I(P)

Does every distribution P have a P-map?
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I-Equivalence
Two graphs G, G’ are called I-equivalent if I(G) = I(G’)

I-equivalence partitions graphs into equivalence 

classes
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Skeletons of BNs

I-equivalent BNs must have same skeleton
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Immoralities and I-equivalence
A V-structure X � Y  Z is called immoral if there is 

no edge between X and Z (“unmarried parents”)

Theorem:  I(G) = I(G’) � G and G’ have the same 

skeleton and the same immoralities.
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Today: Learning BN from data
Want P-map if one exists

Need to find 

Skeleton

Immoralities
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Identifying the skeleton
When is there an edge between X and Y?

When is there no edge between X and Y?
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Algorithm for identifying the skeleton
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Identifying immoralities
When is X – Z – Y an immorality?

Immoral � for all U, Z ∈ U:  ¬ (X ⊥ Y | U)
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From skeleton & immoralities to BN Structures

Represent I-equivalence class as partially-directed 

acyclic graph (PDAG)

How do I convert PDAG into BN?
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Testing independence
So far, assumed that we know I(P’), i.e., all 

independencies associated with true dist. P’

Often, access to P’ only through sample data (e.g., 

sensor measurements, etc.)

Given vars X, Y, Z, want to test whether X ⊥ Y | Z
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Next topic: Learning BN from Data

Two main parts:

Learning structure (conditional independencies)

Learning parameters (CPDs)
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Parameter learning
Suppose X is Bernoulli distribution (coin flip) with 

unknown parameter P(X=H) =θ.

Given training data D = {x(1),…,x(m)} 

(e.g., H H T H H H T T H T H H H..) how do we estimate θ?
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Maximum Likelihood Estimation

Given:  data set D

Hypothesis:  data generated i.i.d. from binomial 

distribution with P(X = H) = θ

Optimize for θ which makes D most likely:
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Solving the optimization problem
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Learning general BNs

Missing data

Fully observable

Unknown structureKnown structure
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Estimating CPDs
Given data D = {(x1,y1),…,(xn,yn)} of samples from X,Y, 

want to estimate P(X | Y)
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MLE for Bayes nets
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Algorithm for BN MLE
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Learning general BNs

Very hard (later)Hard (EM)Missing data

???Easy! ☺Fully observable

Unknown structureKnown structure
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Structure learning
Two main classes of approaches:

Constraint based

Search for P-map (if one exists):

Identify PDAG

Turn PDAG into BN (using algorithm in reading)

Key problem: Perform independence tests

Optimization based

Define scoring function (e.g., likelihood of data)

Think about structure as parameters

More common; can solve simple cases exactly
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MLE for structure learning
For fixed structure, can compute likelihood of data
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Decomposable score
Log-data likelihood

MLE score decomposes over families of the BN (nodes 

+ parents)

Score(G ; D) = ∑i FamScore(Xi | Pai; D)

Can exploit for computational efficiency!
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Finding the optimal MLE structure

Log-likelihood score:

Want G* = argmaxG Score(G ; D)

Lemma:  G ⊆ G’ � Score(G; D) ≤ Score(G’; D)
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Finding the optimal MLE structure

Optimal solution for MLE is always the fully 

connected graph!!! �

�Non-compact representation; Overfitting!!

Solutions:

Priors over parameters / structures (later)

Constraint optimization (e.g., bound #parents)
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Constraint optimization of BN structures

Theorem:  for any fixed d ≥ 2, finding the optimal BN 

(w.r.t. MLE score) is NP-hard

What about d=1??

Want to find optimal tree!
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Finding the optimal tree BN
Scoring function

Scoring a tree



40

Finding the optimal tree skeleton

Can reduce to following problem:

Given graph G = (V,E), and nonnegative weights we for 

each edge e=(Xi,Xj)

In our case: we = I(Xi,Xj)

Want to find tree T⊆ E that maximizes ∑e∈T we

Maximum spanning tree problem!

Can solve in time O(|E| log |E|)!
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Chow-Liu algorithm
For each pair Xi, Xj of variables compute

Compute mutual information 

Define complete graph with weight of edge (Xi,Xi) 

given by the mutual information

Find maximum spanning tree � skeleton

Orient the skeleton using breadth-first search
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Generalizing Chow-Liu
Tree-augmented Naïve Bayes Model [Friedman ’97]

If evidence variables are correlated, Naïve Bayes

models can be overconfident

Key idea:  Learn optimal tree for conditional 

distribution P(X1,…,Xn | Y)

Can do optimally using Chow-Liu (homework! ☺)
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Tasks
Subscribe to Mailing list

https://utils.its.caltech.edu/mailman/listinfo/cs155

Select recitation times

Read Koller & Friedman Chapter 17.1-17.3, 18.1-2, 

18.4.1

Form groups and think about class projects.  If you 

have difficulty finding a group, email Pete Trautman


