Probabilistic Graphical Models

Lecture 3 - Bayesian Networks Semantics

CS/CNS/EE 155
Andreas Krause

Bayesian networks

- Compact representation of distributions over large number of variables
- (Often) allows efficient exact inference (computing marginals, etc.)

HailFinder
56 vars
~ 3 states each
$\rightarrow \sim^{\sim} 0^{26}$ terms
> $\mathbf{1 0 . 0 0 0}$ years on Top
supercomputers
JavaBayes applet'

Causal parametrization

- Graph with directed edges from (immediate) causes to (immediate) effects

Bayesian networks

- A Bayesian network structure is a directed, acyclic graph G, where each vertex s of G is interpreted as a random variable X_{s} (with unspecified distribution)

- A Bayesian network (G,P) consists of
- A BN structure G and ..
- ..a set of conditional probability distributions (CPDs) $P\left(X_{s} \mid P a_{x_{s}}\right)$ where $\mathrm{Pa}_{\mathrm{x}_{\mathrm{s}}}$ are the parents of node X_{s} such that
- (G,P) defines joint distribution

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Representing the world using BNs

True distribution P^{\prime} with cond. ind. $I\left(P^{\prime}\right)$

Bayes net (G, P) with I(P)

- Want to make sure that $I(P) \subseteq I\left(P^{\prime}\right)$
- Need to understand Cl properties of BN (G,P)

Local Markov Assumption

- Each BN Structure G is associated with the following conditional independence assumptions

$J+B \mid A$
 $X \perp$ NonDescendents $_{\mathbf{x}} \mid \mathrm{Pa}_{\mathbf{x}}$

- We write $I_{\text {loc }}(G)$ for these conditional independences
- Suppose (G, P) is a Bayesian network representing P Does it hold that $\mathrm{I}_{\mathrm{Ioc}}(\mathrm{G}) \subseteq I(P)$? If this holds, we say G is an I-map for P.

Factorization Theorem

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

G is an I-map of P
(independence map)

True distribution P can be represented exactly as Bayesian network (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Additional conditional independencies

- BN specifies joint distribution through conditional parameterization that satisfies Local Markov Property $\mathrm{I}_{\text {loc }}(\mathrm{G})=\left\{\left(\mathrm{X}_{\mathrm{i}} \perp\right.\right.$ Nondescendants $\left.\left.\mathrm{X}_{\mathrm{x}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)\right\}$
- But we also talked about additional properties of Cl
- Weak Union, Intersection, Contraction, ...
- Which additional CI does a particular BN specify?
- All Cl that can be derived through algebraic operations

\rightarrow proving Cl is very cumbersome!!

Is there an easy way to find all independences of a BN just by looking at its graph??

BNs with 3 nodes

V-structures

- Know E \perp B
- Suppose we know A. Does $\mathrm{E} \perp \mathrm{B} \mid \mathrm{A}$ hold?

Con hoppen: $P(E=T \mid A=T, B=T)<P(E=T \mid A=T)$
Explaining away

BNs with 3 nodes

Examples

$$
\begin{aligned}
& A \perp F \\
& A \perp F K \\
& A \perp F \mid C, D \times
\end{aligned}
$$

More examples

$$
\begin{aligned}
& A \perp G \\
& A \perp G \mid D x \\
& A \perp G \mid E
\end{aligned}
$$

Active trails

- When are A and I independent?

Active trails

- An undirected path in BN structure G is called active trail for observed variables $\mathbf{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$, if for every consecutive triple of vars X, Y, Z on the path
blochd $\bullet X \rightarrow Y \rightarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
- $X \leftarrow Y \leftarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
- $X \leftarrow Y \rightarrow Z$ and Y is unobserved $(Y \notin \mathbf{O})$
- $X \rightarrow Y \leftarrow Z$ and Y or any of Y 's descendants is observed
- Any variables X_{i} and X_{j} for which \nexists active trail for observations \mathbf{O} are called d-separated by \mathbf{O} We write d-sep($\mathbf{X}_{\mathbf{i}} ; \mathbf{X}_{\mathbf{j}} \mid \mathbf{O}$)
- Sets \mathbf{A} and \mathbf{B} are d-separated given \mathbf{O} if $d-\operatorname{sep}(X, Y \mid \mathbf{O})$ for all $X \in A, Y \in B$. Write $\mathbf{d}-\operatorname{sep}(A ; B \mid O)$

d-separation and independence

Theorem:
d-sep(X;Y|Z) $\rightarrow \mathrm{X} \perp \mathrm{Y} \mid \mathrm{Z}$
i.e., X cond. ind. Y given Z
if there does not exist any active trail between X and Y for observations Z

- Proof uses algebraic properties of conditional independence

Soundness of d-separation

- Have seen: P factorizes according to $G \Leftrightarrow I_{\text {loc }}(G) \subseteq I(P)$
- Define I(G) $=\left\{(X \perp Y \mid Z)\right.$: $\left.d-\operatorname{sep}_{G}(X ; Y \mid Z)\right\}$
- Theorem: Soundness of d-separation P factorizes over $G \rightarrow I(G) \subseteq I(P)$
- Hence, d-separation captures only true independences
- How about I(G) = I(P)?

Does the converse hold?

Suppose P factorizes over G. Does it hold that $I(P) \subseteq I(G)$?

$$
\begin{array}{ll}
P \leftrightarrow x+y & I(P)=\{(x+y)\} \\
G: \otimes \rightarrow \otimes & I(G)=\{3
\end{array}
$$

Existence of dependence for non-d-separated variables

- Theorem: If X and Y are not d-separated given Z , then there exists some distribution P factorizing over G in which X and Y are dependent given Z
- Proof sketch:

Pick active trail
Parameterize CADs along trail to create dependence
Everything else set to independent to avoid cancelling dependencies

Completeness of d-separation

- Theorem: For "almost all" distributions P that factorize over G it holds that $\mathbf{I}(\mathbf{G})=I(P)$
- "almost all": except for a set of distributions with measure 0 , assuming only that no finite set of distributions has measure >0

$$
\begin{aligned}
& B \rightarrow(4) \\
& P(x=T)=\rho \\
& P(y=T(x=T)=r \\
& P(Y=T(X>F)=q \\
& P(y \mid x)=P(y) \\
& \underbrace{P(y=T \mid x=T)}: \underbrace{P(y=T)} \\
& r=r \rho+q(1-p) \Rightarrow r(1-p)=q(1-\rho) \\
& \text { happens with prob. } \sigma
\end{aligned}
$$

Algorithm for d-separation

- How can we check if $\mathrm{X} \perp \mathrm{Y} \mid \mathrm{Z}$?
- Idea: Check every possible path connecting X and Y and verify conditions
- Exponentially many paths!!! :
- Linear time algorithm: Find all nodes reachable from X
- 1. Mark Z and its ancestors
- 2. Do breadth-first search starting
 from X; stop if path is blocked
- Have to be careful with implementation details (see reading)

Representing the world using BNs

True distribution P^{\prime} with cond. ind. $I\left(P^{\prime}\right)$

Bayes net (G,P) with $I(P)$

- Want to make sure that $I(P) \subseteq I\left(P^{\prime}\right)$
- Ideally: $I(P)=I\left(P^{\prime}\right)$
- Want BN that exactly captures independencies in P^{\prime} !

Minimal I-maps

- Lemma: Suppose G' is derived from G by adding edges
- Then $\mathrm{I}\left(\mathrm{G}^{\prime}\right) \subseteq \mathrm{I}(\mathrm{G})$
- Proof:

$$
\begin{aligned}
& I_{C o c}\left(G^{\prime}\right) \leq I_{\text {loc }}(G) \\
& \text { Completeress: } I(G)=\left\{\begin{array}{l}
\text { all } C \mid s \text { derivabt from } l_{10 C}(G) \\
\text { using } C 1 \text { propestios }
\end{array}\right\} \\
& \Rightarrow \mid\left(G^{\prime}\right) \leq I(G)
\end{aligned}
$$

- Thus, want to find graph G with $I(G) \subseteq I(P)$ such that when we remove any single edge, for the resulting graph G^{\prime} it holds that $\mathrm{I}\left(\mathrm{G}^{\prime}\right) \nsubseteq \mathrm{I}(\mathrm{P})$
- Such a graph G is called minimal l-map

Existence of Minimal I-Maps

- Does every distribution have a minimal I-Map?

Yes: Start with full graph $G_{1} I(G)=\varnothing$
Keep removing edges as (long as $I(G) \subseteq I(p)$

Algorithm for finding minimal I-map

- Given random variables and known conditional independences
- Pick ordering X_{1}, \ldots, X_{n} of the variables
- For each Xi $_{i}$
- Find minimal subset $\mathbf{A} \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid A\right)$
- Specify / learn CPD P($\left.X_{i} \mid A\right)$
- Will produce minimal I-map!

Uniqueness of Minimal I-maps

- Is the minimal I-Map unique?

$$
1(P)=1\left(G_{1}\right)
$$

Perfect maps

- Minimal I-maps are easy to find, but can contain many unnecessary dependencies.
- A BN structure G is called P-map (perfect map) for distribution P if $I(G)=I(P)$
- Does every distribution P have a P-map?

Existence of perfect maps

$$
\begin{aligned}
& x, y \sim \operatorname{Ber}(0.5) \\
& z=x \text { xor } y \\
& x+y, y \perp z, z \perp x \\
& 2(x \perp y z)
\end{aligned}
$$

Q2 (map $y+z$ (has no BN P-map

Existence of perfect maps

$$
\begin{aligned}
x_{1}, \ldots x_{4} & x_{1} \perp x_{3} \mid x_{2} x_{4} \\
& x_{2} \perp x_{4} \mid x_{1}, x_{3}
\end{aligned}
$$

Uniqueness of perfect maps

$$
I\left(G_{1}\right)=I\left(G_{2}\right)
$$

I-Equivalence

- Two graphs G, G' are called I-equivalent if $I(G)=I\left(G^{\prime}\right)$
- I-equivalence partitions graphs into equivalence classes

$$
\begin{aligned}
& (x) \rightarrow(\theta) \rightarrow(2) \\
& \otimes \in(y \in(z) \\
& \otimes \in(\theta) \rightarrow(2)
\end{aligned}
$$

Skeletons of BN

- I-equivalent BNs must have same skeleton
same skeleton $\neq>1$-equiv.

Importance of V-structures

- Theorem: If G, G' have same skeleton and same Vstructure, then $\mathrm{I}(\mathrm{G})=\mathrm{I}\left(\mathrm{G}^{\prime}\right)$
- Does the converse hold?

$$
1(G)=\{ \} \quad=\quad 1\left(G^{\prime}\right)=\{ \}
$$

Same sleceton, Not same V-structures

Immoralities and I-equivalence

- A V-structure $X \rightarrow Y \leftarrow Z$ is called immoral if there is no edge between X and Z ("unmarried parents")

- Theorem: $I(G)=I\left(G^{\prime}\right) \Leftrightarrow G$ and G^{\prime} have the same skeleton and the same immoralities.

Tasks

- Subscribe to Mailing list https://utils.its.caltech.edu/mailman/listinfo/cs155
- Read Koller \& Friedman Chapter 3.3-3.6
- Form groups and think about class projects. If you have difficulty finding a group, email Pete Trautman
- Homework 1 out tonight, due in 2 weeks. Start early!

