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Bayesian networks

® Compact representation of distributions over large
number of variables

® (Often) allows efficient exact inference (computing
marginals, etc.)
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Causal parametrization

® Graph with directed edges from (immediate) causes
to (immediate) effects
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Bayesian networks

* A Bayesian network structure is a
directed, acyclic grapﬁﬁa here each vertex s of G is
interpreted as a random variable X, (with unspecified

distribution) O CZ
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¢ A Bayesian network (G,P) consists of
@ A BN structure G and ..

® ..a set of conditional probability distributions (CPDs)
P(X | Paxs), where Pay_are the parents of node X, such that

® (G,P) defines joint distribution
P(X1,... X,) = ][ P(X; | Pay,)



Representing the world using BNs

True distribution P’
with cond. ind. I(P’)

with |(P)

® Want to make sure that I(P) C I(P’)
® Need to understand Cl properties of BN (G,P)



Local Markov Assumption

® Each BN Structure G is associated with the following
conditional independence assumptions
JLg|A @\) /@
X | NonDescendents, | Pa, (//@b

9° ®

* We write I,,.(G) for these conditional independences

® Suppose (G,P) is a Bayesian network representing P
Does it hold that I _.(G) C I(P)?
If this holds, we say G is an |I-map for P.



Factorization Theorem

True distribution P
can be represented exactly as
G is an I-map of P Bayesian network (G,P)

(independence map) P(X1,...Xn) = [[ P(X; | Pax,)



Additional conditional independencies

® BN specifies joint distribution through conditional
parameterization that satisfies Local Markov Property
l,c(G) = {(X; L Nondescendantsy | Paxi)}

¢ But we also talked about additional properties of CI
¢ Weak Union, Intersection, Contraction, ...

® Which additional Cl does a particular BN specify?

@ All Cl that can be derived through algebraic operations

=>» proving Cl is very cumbersome!!

Is there an easy way to find all independences
of a BN just by looking at its graph??



BNs with 3 nodes

Local Markov Property:
®_’®_’@ x L2l X 1 NonDesc(X) | Pa(X)
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® Suppose we know A. Does E L B | A hold?
(o Logpmt P(E =T [A=T B=T) < P(E=T | A=T)
E"PLQ;”" 4‘0\,2, mwouy
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BNs with 3 nodes

Indirect causal effect Local Markov Property:

@_,@_,@ X L NonDesc(X) | Pa(X)
Indirect evidential effect> X1zZ]|Y
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Common effect
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More examples
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Active trails

® When are A and | independent?
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Active trails

¢ An undirected path in BN structure G is called
active trail for observed variables O C {X,,...,X_}, if for
every consecutive triple of vars X,Y,Z on the path
“{LWJ *X—2>Y—>ZandYisunobserved (Y ¢ O)
‘SO PEIARS Z;nd Y is unobserved (Y ¢ O)
* X <Y > ZandY is unobserved (Y ¢ O)
* X 2> Y < ZandY or any of Y’s descendants is observed

® Any variables X; and X; for which 3 active trail for
observations O are called d-separated by O
We write d-sep(X;;X; | O)

¢ Sets A and B are d-separated given O if d-sep(X,Y | O)
for all XeA, YEB. Write d-sep(A; B | O)
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d-separation and independence

Theorem:
d-sep(X;Y |Z) =2 X LY |Z

l.e., X cond. ind. Y given Z
if there does not exist
any active trail

between X and Y

for observations Z

® Proof uses algebraic properties of conditional
independence
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Soundness of d-separation

® Have seen: P factorizes accordingto G < |,..(G)C I(P)
® Define I(G) ={(X L Y | Z): d-seps(X;Y |Z)}

¢ Theorem: Soundness of d-separation
P factorizes over G = I(G) C I(P)

® Hence, d-separation captures only true
independences

¢ How about I(G) = I(P)?
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Does the converse hold?

Suppose P factorizes over G.
Does it hold that I(P) C I(G)?
Pe X LY  T(P) =g (X193

Gt @N@@ I(G) - Ej
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Existence of dependences for non-d-separated variables

¢ Theorem: If Xand Y are not d-separated given Z, then
there exists some distribution P factorizing over G in
which X and Y are dependent given Z

¢ Proof sketch:
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Completeness of d-separation

® Theorem: For “almost all” distributions P that
factorize over G it holds that I(G) = I(P)

* “almost all”: except for a set of distributions with measure
0, assuming only that no finite set of distributions has
measure >0
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Algorithm for d-separation

® How can we checkif X LY | Z?

® |dea: Check every possible path connecting X and Y and
verify conditions

* Exponentially many paths!!! ®

® Linear time algorithm:
Find all nodes reachable from X

¢ 1. Mark Z and its ancestors

® 2. Do breadth-first search starting
from X; stop if path is blocked

® Have to be careful with implementation details (see
reading)
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Representing the world using BNs

True distribution P’ NEE S
with cond. ind. I(P") Bayes net (G,P)
with [(P)

¢ Want to make sure that I(P! C I(P")
® |deally: I(P) = I(P’)
Q
¢ Want BN that exactly captures independencies in P’!
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Minimal I-maps

® Lemma: Suppose G’ is derived from G by adding
edges

® Then I(G’) C I(G)

® Proof:

| ") < .. (6

Coc

= 1(¢) ¢ I(c) 9
® Thus, want to find graph G with I(G) C I(P) such that

when we remove any single edge, for the resulting
graph G’ it holds that I(G’) Z I(P)

@ Such a graph G is called minimal I-map
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Existence of Minimal I-Maps

® Does every distribution have a minimal [-Map?
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Algorithm for finding minimal I-map

@ Given random variables and known conditional
independences

*® Pick ordering X;,...,X,, of the variables

® For each X,

¢ Find minimal subset A C{X,,...,X. ;} such that
P(X; | XpoerXiq) = P(X; | A)
® Specify / learn CPD P(X. | A)

® Will produce minimal I-map!
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Uniqueness of Minimal I-maps
® |s the minimal I-Map unique?

1(P) = (&)

® ®
PASS




® Minimal I-maps are easy to find, but can contain
many unnecessary dependencies.

@ A BN structure G is called P-map (perfect map) for
distribution P if I{G) = I(P)

® Does every distribution P have a P-map?
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Existence of perfect maps
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Existence of perfect maps
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Unigueness of perfect maps
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l-Equivalence

® Two graphs G, G’ are called I-equivalent if I(G) = |(G’)
¢ |-equivalence partitions graphs into equivalence

classes
Ge© 6
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Skeletons of BNs

Sk cle fon Of -

® |-equivalent BNs must have same skeleton V)
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Importance of V-structures

® Theorem: If G, G’ have same skeleton and same V-
structure, then I(G) = |(G’)

@ Does the converse hold?
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Immoralities and |-equivalence

® A V-structure X 2 Y €< Zis called immoral if there is
no edge between X and Z (“unmarried parents”)
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® Theorem: [(G) =1(G’) & G and G’ have the same
skeleton and the same immoralities.
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@ Subscribe to Mailing list
https://utils.its.caltech.edu/mailman/listinfo/cs155

¢ Read Koller & Friedman Chapter 3.3-3.6

® Form groups and think about class projects. If you
have difficulty finding a group, email Pete Trautman

® Homework 1 out tonight, due in 2 weeks. Start early!
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