Probabilistic Graphical Models

Lecture 2 - Bayesian Networks Representation

CS/CNS/EE 155
Andreas Krause

Announcements

- Will meet in Steele 102 for now
- Still looking for another 1-2 TAs..
- Homework 1 will be out soon. Start early!! ©

Multivariate distributions

- Instead of random variable, have random vector

$$
\mathbf{X}(\omega)=\left[X_{1}(\omega), \ldots, X_{n}(\omega)\right]
$$

- Specify $P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$
- Suppose all X_{i} are Bernoulli variables.
- How many parameters do we need to specify?

Marginal distributions

- Suppose we have joint distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
- Then

$$
P\left(X_{i}=x_{i}\right)=\sum_{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}} P\left(x_{1}, \ldots, x_{n}\right)
$$

- If all X_{i} binary: How many terms?

Rules for random variables

- Chain rule

$$
P\left(x_{1} \ldots x_{m}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) \cdot \ldots P\left(x_{n}\left(x_{1} \ldots x_{n-1}\right)\right.
$$

- Bayes' rule

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

How do we get Ply? ?

Key concept: Conditional independence

- Events α, β conditionally independent given γ if

$$
P(\alpha \cap \beta \mid \gamma)=P(\alpha \mid \gamma) P(\beta \mid \gamma)
$$

- Random variables X and Y cond. indep. given Z if for all $x \in \operatorname{Val}(X), y \in \operatorname{Val}(Y), Z \in \operatorname{Val}(Z)$

$$
P(\underline{X=x}, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)
$$

- If $P(Y=y \mid Z=z)>0$, that's equivalent to

$$
P(X=x \mid Z=z, Y=y)=P(X=x \mid Z=z)
$$

Similarly for sets of random variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
We write: $\mathbf{P} \vDash \mathbf{X} \perp \mathbf{Y} \perp \mathbf{Z}$

Why is conditional independence useful?

- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots \underbrace{P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)}$ How many parameters?

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{n-1}=2^{n}-2^{n-1}
$$

- Now suppose $X_{1} \ldots X_{i-1} \perp X_{i+1} \ldots X_{n} \mid X_{i}$ for all i Then

$$
P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdot P\left(x_{3} \mid x_{2}\right) \cdot \ldots \cdot P\left(x_{n}\left(x_{m-1}\right)\right.
$$

How many parameters? Expenential reduction in \#f earas

- Can we compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ more efficiently? Yes (offar)

Properties of Conditional Independence

- Symmetry
- $X \perp Y|Z \Rightarrow Y \perp X| Z$
- Decomposition
- $X \perp Y, W|Z \Rightarrow X \perp Y| Z$
- Contraction "(nverse Deconposition"
- $(X \perp Y \mid Z) \wedge(X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$
- Weak union
- $X \perp Y, W|Z \Rightarrow X \perp Y| Z, W$
- Intersection
- $(X \perp Y \mid Z, W) \wedge(X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$
- Holds only if distribution is positive, i.e., $\mathrm{P}>0$

Key questions

- How do we specify distributions that satisfy particular independence properties?
\rightarrow Representation
- How can we exploit independence properties for efficient computation?
\rightarrow Inference
- How can we identify independence properties present in data?
\rightarrow Learning

Will now see example: Bayesian Networks

Key idea

- Conditional parameterization (instead of joint parametrization)
- For each RV, specify $P\left(X_{i} \mid X_{A}\right)$ for set X_{A} of RVs
- Then use chain rule to get joint parametrization

$$
P\left(x_{1} \ldots x_{m}\right)=\pi P\left(x_{i} \mid x_{A_{i}}\right)
$$

- Have to be careful to guarantee legal distribution...

$$
P(x \mid y), P(y \mid x)
$$

Does there exist $P(x, y)$ with above Ait cod distributions $N_{0}+$ in general

Example: 2 variables

$$
\begin{aligned}
& P(I=V(H)=0.8 \\
& P(G \mid I) \frac{\lambda^{6} \mid A B}{V H \left\lvert\, \frac{0.80 .2}{}+=1\right.} \begin{array}{l}
H=1 \\
0.60 .4 \\
=1
\end{array}=1
\end{aligned}
$$

Example: 3 variables

Example: Naïve Bayes models

- Class variable Y

- Evidence variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Assume that $X_{A} \perp X_{B} \mid Y$ for all subsets X_{A}, X_{B} of $\left\{X_{1}, \ldots, X_{n}\right\}$
- Conditional parametrization:
- Specify P(Y)
- Specify $P\left(X_{i} \mid Y\right)$
- Joint distribution

$$
P\left(x_{1}, \ldots x_{n}, y\right)=P(y) \prod_{i} P\left(x_{i} \mid y\right)
$$

Today: Bayesian networks

- Compact representation of distributions over large number of variables
- (Often) allows efficient exact inference (computing marginals, etc.)

HailFinder
56 vars
~ 3 states each
$\rightarrow \sim^{\sim} 10^{26}$ terms
> $\mathbf{1 0 . 0 0 0}$ years on Top
supercomputers
JavaBayes applet'

Causal parametrization

- Graph with directed edges from (immediate) causes to (immediate) effects

Bayesian networks

- A Bayesian network structure is a directed, acyclic graph G, where each vertex s of G is interpreted as a random variable X_{s} (with unspecified distribution)

- A Bayesian network (G,P) consists of
- A BN structure G and ..
- ..a set of conditional probability distributions (CPIJs) $P\left(X_{s} \mid P a_{x_{s}}\right)$ where $\mathrm{Pa}_{\mathrm{x}_{\mathrm{s}}}$ are the parents of node X_{s} such that
- (G,P) defines joint distribution

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Bayesian networks

- Can every probability distribution be described by a BN?

$$
P\left(x_{1} \ldots x_{m}\right)=P\left(x_{1}\right) P\left(x_{2}\left(x_{1}\right) \ldots P\left(x_{m} \mid x_{1} \ldots x_{n-1}\right)\right.
$$

Representing the world using BNs

True distribution P^{\prime} with cond. ind. $I\left(P^{\prime}\right)$

Bayes net (G,P) with I(P)

- Want to make sure that $I(P) \subseteq I\left(P^{\prime}\right)$
- Need to understand Cl properties of $\mathrm{BN}(\mathrm{G}, \mathrm{P})$

Which kind of Cl does a BN imply?
$E \perp B$

$$
\begin{aligned}
P(E, B) & =\sum_{A J M} P(E, B, A, J, M) \\
& =\sum_{A J M} P P^{P(E) P(B) P(A \mid E, B) P(J / A)} P(\sim / A) \\
& =P(E) P(B) \sum_{A J M} P(A(E B) P(J \mid A) P(\mu, A) \\
& =P(E) P(B)
\end{aligned}
$$

Which kind of Cl does a BN imply?
$J \perp M \mid A$

$$
\begin{aligned}
& P(J \mid A M)=\frac{P(J, A, M)}{P(A, M)} \\
& P(J, A, M)=\sum_{E, B} P(J, A, M, E, B) \\
&=\sum_{E, B} P(E) P(B) P(A(E, B) P(J(A) P(M(A) \\
&=P(J(A) P(M(A) \\
& \sum_{=P B(E) P(B) P(A \mid E, B)}^{\sum P(M, A)}
\end{aligned}
$$

$$
\Rightarrow P(J \mid A M)=\frac{P(J, A, M)}{P(A M)}=\frac{P(J(A) P(A, M)}{P\left(A_{1} M\right)}=P(J \mid A)
$$

Local Markov Assumption

- Each BN Structure G is associated with the following conditional independence assumptions

- We write $I_{\text {loc }}(G)$ for these conditional independences
- Suppose (G, P) is a Bayesian network representing P Does it hold that $\mathrm{I}_{\mathrm{Ioc}}(\mathrm{G}) \subseteq I(P)$? If this holds, we say G is an I-map for \underline{P}.

Factorization Theorem

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

G is an I-map of P
(independence map)

True distribution P
can be represented exactly as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

i.e., P can be represented as a Bayes net (G,P)

Factorization Theorem

True distribution P
can be represented exactly as a Bayes net (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

G is an I-map of P (independence map)

Proof: I-Map to factorization

Ordering $\pi:\{1 \ldots n\} \rightarrow\{1 \ldots n\}$ topological

If: $\forall X_{j}$ descercht of X_{i}
$\pi(j)>\pi(i)$

Con find topological onkening in linear time

$$
P\left(x_{1} \ldots x_{m}\right)=\underbrace{P\left(X_{\pi(i)} \mid X_{\pi(1)} \ldots X_{\pi(i-1)}\right)}_{P\left(X_{\pi(i)} \mid P_{\left.a_{X_{\pi(i)}}\right)}\right)} \text { Chair rale }
$$

Factorization Theorem

True distribution P
can be represented exactly as a Bayes net (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

G is an I-map of P (independence map)

The general case

$$
\begin{aligned}
& P\left(x_{1} \ldots x_{m}\right)=\Pi P\left(x_{i} \mid P_{a_{i}}\right) \stackrel{\jmath}{\Rightarrow} \forall x_{i}: \forall N \leq \text { Nondes } x_{i} \\
& x_{i} \perp N / P_{a_{i}} \\
& y=P_{a} x ; \\
& \left.z=\text { Nondesc. } x_{i} \backslash(Y \cup N)\right) P\left(X_{i}(Y, N)=\frac{P\left(X_{i}, Y_{i} N\right)}{P\left(Y_{N}\right)}\right. \\
& \text { (2) } D=\operatorname{Desc}\left(x_{i}\right) \\
& \text { (D) } \\
& =\sum_{z D} P\left(X_{i}(y) \prod_{x \in D} P\left(x \mid P a_{x}\right) \prod_{x^{\prime} \in(N v z \cup y)} P\left(x^{\prime} \mid P a_{x^{\prime}}\right)\right. \\
& =P(x_{i}(y) \underbrace{\sum_{z=1} \prod_{x^{\prime} \in(N \sim z \cup y)} P\left(x^{\prime} \mid P_{x^{\prime}}\right)}_{(x)} \underbrace{\sum_{D} \prod_{x \in D} P\left(x \mid P_{a}\right)}_{=1} \\
& \begin{array}{l}
P(y, N)=\sum_{x_{i}} P\left(x_{i}, y_{1}, N\right)=\underbrace{\sum_{z} \prod_{x^{\prime} \nmid(N \cup z \cup y)} P\left(x^{\prime} \mid P a_{x^{\prime}}\right)}_{=(x)} \underbrace{\sum_{x_{i}} P\left(x_{i} \mid y\right)}_{=1} \\
\Rightarrow P\left(x_{i} \mid y, N\right)=P\left(x_{i} \mid y\right)
\end{array}
\end{aligned}
$$

Factorization Theorem

$$
I_{\mathrm{loc}}(G) \subseteq I(P)
$$

G is an I-map of P
(independence map)

True distribution P can be represented exactly as Bayesian network (G,P)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Defining a Bayes Net

- Given random variables and known conditional independences
- Pick ordering X_{1}, \ldots, X_{n} of the variables
- For each Xi $_{\text {i }}$
- Find minimal subset $A \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\}$ such that $X_{i} \perp X_{\neg \mathcal{A}} \mid A$, where $\neg A=\left\{X_{1}, \ldots, X_{n}\right\} \backslash A \quad$ Enoure local Markor propety
holds!
- Specify / learn $\operatorname{CPD}\left(X_{i} \mid A\right)$

$$
\wedge A_{\text {parents of } X_{i}}
$$

- Ordering matters a lot for compactness of representation! More later this course.

Adding edges doesn't hurt

Theorem:

Let G be an I-Map for P, and G^{\prime} be derived from G by adding an edge. Then G^{\prime} is an I -Map of P
(G^{\prime} is strictly more expressive than G)

- Proof : $\operatorname{lotp}: I_{\text {lc }}\left(G^{\prime}\right) \leqslant \Gamma_{\text {oc }}(G)$

$$
\text { Than } I_{l o c}\left(G^{\prime}\right) \subset I(P) \text { since } I_{l o c}(G) \subset I(P)
$$

$$
\begin{aligned}
& \text { (4) (1) } \\
& \text { We: } x+\operatorname{Nondesc}(x ; G) \mid P_{x}(x ; \sigma) \\
& \Rightarrow x \perp \operatorname{Mondecc}\left(x ; G^{\prime}\right) \mid P_{a}\left(x ; G^{\prime}\right) \\
& x \perp N, z|y \Rightarrow x \perp N| Y, z \\
& \text { holds ale: Weak Union property of C.I. } D_{29}
\end{aligned}
$$

Additional conditional independencies

- BN specifies joint distribution through conditional parameterization that satisfies Local Markov Property
- But we also talked about additional properties of Cl
- Weak Union, Intersection, Contraction, ...
- Which additional CI does a particular BN specify?
- All Cl that can be derived through algebraic operations

$$
\text { local Morkor prop. } I_{\text {loc }}(G) \leqslant I(G)
$$

What you need to know

- Bayesian networks
- Local Markov property
- I-Maps
- Factorization Theorem

Tasks

- Subscribe to Mailing list https://utils.its.caltech.edu/mailman/listinfo/cs155
- Read Koller \& Friedman Chapter 3.1-3.3
- Form groups and think about class projects. If you have difficulty finding a group, email Pete Trautman

