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Announcements

® Will meet in Steele 102 for now
¢ Still looking for another 1-2 TAs..
* Homework 1 will be out soon. Start early!! ©



Multivariate distributions

¢ |Instead of random variable, have random vector
X(w) = [Xy(w), ..., X (w)]

® Specify P(X;=xy,...,X,=X,,)

@ Suppose all X; are Bernoulli variables.
® How many parameters do we need to specify?



Marginal distributions

® Suppose we have joint distribution P(X,,...,X,)

@ Then

* If all X; binary: How many terms?



Rules for random variables

@ Chain rule

Plxe o ) = PO PLFlK - BRI KL)

¢ Bayes’ rule

P(yI) P
P<lY) = P(Y)
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Key concept: Conditional independence

® Events a, (3 conditionally independent given ~ if

Pldnf Iy = Pl ) PPl

® Random variables X and Y cond. indep. given Z if
for all xe Val(X), ye Val(Y), Z€ Val(Z)

P(X=x,Y=y|Z=2)=P(X=x | Z=1) P(Y=y| Z=2)

° If P(Y=y |Z=2z)>0, that’s equivalent to
PX=x|Z=2z,Y=y)=P(X=x|Z2=2)
Similarly for sets of random variables X, Y, Z
We write: P F Y|Z



Why is conditional independence useful?
® P(XyyeX) = PXy) P(Xy | Xg) o P(Xg | Xy Xorg)

A

How many parameters? o)
o) ( A -1 2
1" <« 2 « 72 .. L7 :’Qq\u[
® Now suppose X;..X ;L X, .. X | X foralli
Then

P(Xy,00) X ) = P(%) ?(mx ’P(x 1%,)" . P(s(m[xh,,>
pa
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How many parameters? £ cpometi ol vednotirn i F porons

® Can we compute P(X ) more efficiently? ygs (o)



Properties of Conditional Independence

¢ Symmetry
eX1lY|Z=YL1X|Z

¢ Decomposition
X I1YW|Z=X1Y]|Z

¢ Contraction “(avege D4C<>~~{“fV"’L'“ ;
e(XLY|ZDAXLWI]Y,Z)=XLYW]|Z

¢ Weak union
X 1IYW|Z=XL1Y|ZW

¢ |Intersection
e(XLY|ZWIANXLWI]Y,Z)=X1LYW]|Z
® Holds only if distribution is positive, i.e., P>0



¢ How do we specify distributions that satisfy particular
independence properties?

=» Representation

® How can we exploit independence properties for
efficient computation?

= Inference

® How can we identify independence properties
present in data?

=» Learning

Will now see example: Bayesian Networks



® Conditional parameterization
(instead of joint parameterization)

® For each RV, specify P(X. | X,) for set X, of RVs

® Then use chain rule to get joint parametrization
P& ...%\ = T P(K; (X4, )

® Have to be careful to guarantee legal distribution...

Plety) | P(YIx)
Does Tae- ayl PEY) it sboe A3t cond ditn bations

NsF i 2"\'@”"’(/
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Example: 2 variables
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Example: 3 variables
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Example: Naive Bayes models

® Class variable Y
® Evidence variables X,,..., X

® Assumethat X, 1 X5 | Y
for all subsets X,,Xg of {X,,...,.X..}

® Conditional parametrization:
® Specify P(Y)

* Specify P(X; | Y)

@ Joint distribution

Ple 2 )2 P 1) P 1Y)
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Today: Bayesian networks

® Compact representation of distributions over large
number of variables

® (Often) allows efficient exact inference (computing
marginals, etc.)

HailFinder
56 vars
~ 3 states each

=>~102° terms
> 10.000 years
on Top
| supercomputers
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Causal parametrization

® Graph with directed edges from (immediate) causes
to (immediate) effects
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Bayesian networks

* A Bayesian network structure is a
directed, acyclic grapﬁﬁa here each vertex s of G is
interpreted as a random variable X, (with unspecified

distribution) O CZ
< TS \ NOT=
(> =K
A o NS

¢ A Bayesian network (G,P) consists of
@ A BN structure G and ..

¢ _.a set of conditional probability distributions (CPIs)
P(X | Paxs), where Pay_are the parents of node X, such that

® (G,P) defines joint distribution
P(X1,... X,) = ][ P(X; | Pay,)
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Bayesian networks

® Can every probability distribution be described by a BN?
P4, - K) = Py (K, [« , - 'P[m (X, ..,Xw_,)

év
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Representing the world using BNs

True distribution P’

with cond. ind. I!P’)

with J(il

¢ Want to make sure that I(P) C I(P’)

- _

® Need to understand Cl properties of BN (G,P)
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Which kind of Cl does a BN imply?

ELR
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Which kind of Cl does a BN imply?

J Lm /A
() D(oar)= ?&{“

- P AMESB)
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Local Markov Assumption

® Each BN Structure G is associated with the following
conditional independence assumptions
JLg|A @\) /@
X | NonDescendents, | Pa, (//@b

9° ®

* We write I,,.(G) for these conditional independences

® Suppose (G,P) is a Bayesian network representing P
Does it hold that I _.(G) C I(P)?
If this holds, we say G is an |I-map for P.
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Factorization Theorem

True distribution P
can be represented exactly as

(G CIP) =0 pix,...x,) = [[P(X. | Pax)

G is an I-map of P i.e., P can be represented as
(independence map) a Bayes net (G,P)

ETK | NG
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Factorization Theorem

True distribution P
can be represented exactly as

a Bayes net (G,P) |::> loc(G) € I(P)

P(X1,... Xa) = [[ P(X; | Pax,) G is an I-map of P
¢ (independence map)

3K 1 NEgy
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Proof: I-Map to factorization

Odbivgg T : Sy o §tr oy Topdloged

® /@ 2 Y X, degcadt of %,
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Factorization Theorem

True distribution P
can be represented exactly as

a Bayes net (G,P) |::> loc(G) € I(P)

P(X1,... Xa) = [[ P(X; | Pax,) G is an I-map of P
¢ (independence map)

3K 1 NEgy
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The general case

T7X,... £.)= T P | Pc%.\ ENE V/\/Ql\/duderc%
}/; \LN/ Pc:./(‘.
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Factorization Theorem

3K 1 NEgy

R True distribution P
loc(G) < 1(P) ﬁ can be represented exactly as

G is an I-map of P Bayesian network (G,P)
(independence map) P(X1,...Xn) = [[ P(X; | Pax,)
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Defining a Bayes Net

@ Given random variables and known conditional
independences

® Pick ordering X;,,..., X, of the variables

® For each X,

* Find minimal subset A C{X,,... X;;} such that X; L X_, | A,

where —A = {Xli'"ixn} \ A Encont (.ocw[ M“—\/le/' /bW
* Specify / learn CPD(X. | A) halds !

A povets of i
® Ordering matters a lot for compactness of
representation! More later this course.
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Adding edges doesn’t hurt

Theorem:

Let G be an I-Map for P, and G’ be derived from G by
adding an edge. Then G’ is an I-Map of P

(G’ is strictly more expressive than G)

® Proof : Wip: I&C (69 ¢ 1{:((@)
v T, (61) CT(D)  since T, (6) ¢ 10O

VY w6 Ly vt XL Modese (L6 ) 1Pay ¥ 6)
. G[
(D e -:_7 X 2 Mwelenc y,&l) N

oU( be : \I\/C.‘i,k Union f"”/oe"}fb' of C1I. D



Additional conditional independencies

® BN specifies joint distribution through conditional
parameterization that satisfies Local Markov Property

® But we also talked about additional properties of Cl

\

¢ Weak Union, Intersection, Contraction, ...

* Which additional Cl does a particular BN specify?

@ All Cl that can be derived through algebraic operations

{,OCwZ Movltoe prop- I(ac (§) C I(@)
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What you need to know

@ Bayesian networks

¢ Local Markov property

* |-Maps

® Factorization Theorem
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@ Subscribe to Mailing list
https://utils.its.caltech.edu/mailman/listinfo/cs155

¢ Read Koller & Friedman Chapter 3.1-3.3

® Form groups and think about class projects. If you
have difficulty finding a group, email Pete Trautman
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