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Announcements
Will meet in Steele 102 for now

Still looking for another 1-2 TAs..

Homework 1 will be out soon. Start early!! ☺



3

Multivariate distributions
Instead of random variable, have random vector

X(ω) = [X1(ω),…,Xn(ω)]

Specify P(X1=x1,…,Xn=xn)

Suppose all Xi are Bernoulli variables.

How many parameters do we need to specify?
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Marginal distributions
Suppose we have joint distribution P(X1,…,Xn)

Then

If all Xi binary:  How many terms?
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Rules for random variables
Chain rule

Bayes’ rule



6

Key concept: Conditional independence

Events α, β conditionally independent given γ if

Random variables X and Y cond. indep. given Z if

for all x∈ Val(X), y∈ Val(Y), Z∈ Val(Z)

P(X = x, Y = y | Z = z) = P(X =x | Z = z) P(Y = y| Z= z)

If P(Y=y |Z=z)>0, that’s equivalent to

P(X = x | Z = z, Y = y) = P(X = x | Z = z)

Similarly for sets of random variables X, Y, Z

We write:  P � X⊥ Y | Z
6



7

Why is conditional independence useful?
P(X1,…,Xn) = P(X1) P(X2 | X1) … P(Xn | X1,…,Xn-1)

How many parameters?

Now suppose   X1 …Xi-1 ⊥ Xi+1… Xn | Xi for all i

Then

P(X1,…,Xn) =

How many parameters?

Can we compute P(Xn) more efficiently?
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Properties of Conditional Independence

Symmetry

X ⊥ Y | Z ⇒ Y ⊥ X | Z

Decomposition

X ⊥ Y,W | Z ⇒ X ⊥ Y | Z

Contraction

(X ⊥ Y | Z) Æ (X ⊥W | Y,Z) ⇒ X ⊥ Y,W | Z

Weak union

X ⊥ Y,W | Z ⇒ X ⊥ Y | Z,W

Intersection

(X ⊥ Y | Z,W) Æ (X ⊥W | Y,Z) ⇒ X ⊥ Y,W | Z

Holds only if distribution is positive, i.e., P>0
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Key questions
How do we specify distributions that satisfy particular 

independence properties?

� Representation

How can we exploit independence properties for 

efficient computation?

� Inference

How can we identify independence properties 

present in data?

� Learning

Will now see example:  Bayesian Networks
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Key idea
Conditional parameterization 

(instead of joint parameterization)

For each RV, specify P(Xi | XA) for set XA of RVs

Then use chain rule to get joint parametrization

Have to be careful to guarantee legal distribution…
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Example: 2 variables
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Example: 3 variables
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Example: Naïve Bayes models
Class variable Y

Evidence variables X1,…,Xn

Assume that XA⊥ XB | Y 

for all subsets XA,XB of {X1,…,Xn}

Conditional parametrization:

Specify P(Y)

Specify P(Xi | Y)

Joint distribution 
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Today: Bayesian networks
Compact representation of distributions over large 

number of variables

(Often) allows efficient exact inference (computing 

marginals, etc.)

HailFinder

56 vars

~ 3 states each

�~1026 terms

> 10.000 years

on Top 

supercomputers
JavaBayes applet
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Causal parametrization
Graph with directed edges from (immediate) causes 

to (immediate) effects 

Earthquake Burglary

Alarm

JohnCalls MaryCalls
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Bayesian networks
A Bayesian network structure is a 
directed, acyclic graph G, where each vertex s of G is 
interpreted as a random variable Xs (with unspecified 
distribution)

A Bayesian network (G,P) consists of 

A BN structure G and ..

..a set of conditional probability distributions (CPTs)
P(Xs | PaXs

), where PaXs
are the parents of node Xs such that

(G,P) defines joint distribution
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Bayesian networks
Can every probability distribution be described by a BN?
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Representing the world using BNs

Want to make sure that  I(P) ⊆ I(P’)

Need to understand CI properties of BN (G,P) 
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True distribution P’

with cond. ind. I(P’) Bayes net (G,P)

with  I(P)

represent
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Which kind of CI does a BN imply?

E B

A

J M
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Which kind of CI does a BN imply?

E B

A

J M
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Local Markov Assumption
Each BN Structure G is associated with the following 

conditional independence assumptions

X ⊥ NonDescendentsX | PaX

We write Iloc(G) for these conditional independences

Suppose (G,P) is a Bayesian network representing P

Does it hold that Iloc(G) ⊆ I(P)?

If this holds, we say G is an I-map for P.
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Factorization Theorem
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Iloc(G) ⊆ I(P)

True distribution P

can be represented exactly as

G is an I-map of P

(independence map)
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a Bayes net (G,P)
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Factorization Theorem
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Proof:  I-Map to factorization
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Factorization Theorem

s
1 s

2 s
3

s
4

s
5 s

7
s
6

s
11

s
12

s
9 s

10

s
8

s
1 s

3

s
12

s
9

Iloc(G) ⊆ I(P)

G is an I-map of P

(independence map)

True distribution P

can be represented exactly as

a Bayes net (G,P)



26

The general case
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Factorization Theorem
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Defining a Bayes Net
Given random variables and known conditional 

independences

Pick ordering X1,…,Xn of the variables

For each Xi

Find minimal subset A ⊆{X1,…,Xi-1} such that Xi ⊥ X¬A | A, 

where ¬A = {X1,…,Xn} \ A

Specify / learn CPD(Xi | A)

Ordering matters a lot for compactness of 

representation!  More later this course.
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Adding edges doesn’t hurt
Theorem:  

Let G be an I-Map for P, and G’ be derived from G by 

adding an edge.  Then G’ is an I-Map of P

(G’ is strictly more expressive than G)

Proof
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Additional conditional independencies

BN specifies joint distribution through conditional 

parameterization that satisfies Local Markov Property

But we also talked about additional properties of CI

Weak Union, Intersection, Contraction, …

Which additional CI does a particular BN specify?

All CI that can be derived through algebraic operations
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What you need to know
Bayesian networks

Local Markov property

I-Maps

Factorization Theorem
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Tasks
Subscribe to Mailing list

https://utils.its.caltech.edu/mailman/listinfo/cs155

Read Koller & Friedman Chapter 3.1-3.3

Form groups and think about class projects.  If you 

have difficulty finding a group, email Pete Trautman


