CS/CNS/EE 155: Probabilistic Graphical Models Problem Set 3

Handed out:	9 Nov 2009
Due:	23 Nov 2009

Gibbs sampling

Preamble. Suppose that we are given a full joint distribution $p\left(Y_{1}, \ldots, Y_{n}\right)$ over random variables, but are only interested in drawing samples $Y_{i} \sim p\left(Y_{i}\right)$. The natural solution to this problem would be to actually calculate the marginal by integrating over $\left\{Y_{1}, \ldots Y_{n}\right\}-Y_{i}$:

$$
p\left(Y_{i}\right)=\sum_{\left\{Y_{1}, \ldots Y_{n}\right\}-Y_{i}} p\left(Y_{1}, \ldots, Y_{n}\right),
$$

from which samples Y_{i} might be drawn.

Unfortunately, in many cases (e.g., where the joint distribution has high treewidth), the required marginalization is intractable. In Homework 1, you showed that if $p\left(Y_{1}, \ldots, Y_{n}\right)$ is given as a graphical model, and Y_{1}, \ldots, Y_{n} are all discrete, and you have observations of all variables except Y_{k}, computing the conditional distribution

$$
p\left(Y_{k} \mid Y_{1}=y_{1}, \ldots, Y_{k-1}=y_{k-1}, Y_{k+1}=y_{k+1}, \ldots, Y_{n}=y_{n}\right)
$$

is very efficient. In this case, sampling from this conditional distribution only requires sampling from a Bernoulli random variable. Gibbs sampling is an approximate inference method peculiarly well suited to such situation, where one can sample from the conditional distributions

$$
p\left(Y_{k} \mid\left\{Y_{1}, \ldots Y_{n}\right\}-Y_{k}\right) \quad \forall k .
$$

As outlined in both KF09, Bis06, the algorithm for Gibbs sampling is quite straightforward:

1. Generate an initial guess $(t=0)$ about the state $\left(Y_{1}=y_{1}^{t=0}, \ldots, Y_{n}=y_{n}^{t=0}\right)$.
2. Repeat, over t, until convergence (a very loaded statement - see mixing times, stationary distributions, etc):

Draw $y_{1}^{t+1} \sim p\left(Y_{1} \mid Y_{2}=y_{2}^{t}, \ldots Y_{n}=y_{n}^{t}\right)$
Draw $y_{2}^{t+1} \sim p\left(Y_{2} \mid Y_{1}=y_{1}^{t+1}, Y_{3}=y_{3}^{t} \ldots Y_{n}=y_{n}^{t}\right)$
\vdots
Draw $y_{n}^{t+1} \sim p\left(Y_{n} \mid Y_{1}=y_{1}^{t+1}, Y_{2}=y_{2}^{t+1} \ldots Y_{n-1}=y_{n-1}^{t+1}\right)$

As it turns out, these samples $\left\{y_{i}^{1}, y_{i}^{2}, \ldots, y_{i}^{T}\right\}$ not only converge (in the sense that given a long enough burn in time, the samples are all coming from the same distribution), but converge to the "correct" distribution, which in this case is the marginal $p\left(Y_{i}\right)$.

Problem.

1. Write a Gibbs sampler to estimate the marginal distribution generated from the conditional distributions

$$
\begin{array}{ll}
p(x \mid y) \propto y e^{-y x}, & 0<x<B<\infty \\
p(y \mid x) \propto x e^{-x y}, & 0<y<B<\infty
\end{array}
$$

where B is a known positive constant (as we will see later, the restriction to the interval $x, y \in(0, B)$ ensures that the marginal $p(x)$ exists).
For $B=5$, and for sample sizes $T=500,5000,50000$, plot the histogram of values for x.
Note that although the simulation of $p(x)$ is straightforward using a Gibbs sampler, the marginal is not obvious from inspection of the above marginals.
2. Importantly, simulation based approximations provide straightforward methods of calculating the moments of the marginal distributions. Provide an estimate of the expectation of $X, \mathbb{E}_{p(X)}[X]$ by using the 500,5000 and 50000 samples from 1$)$.
3. [Extra Credit:] Consider the bivariate case, where we are given $p_{X \mid Y}(X \mid Y)$ and $p_{Y \mid X}(Y \mid X)$. As it turns out, we can derive a fixed point integral equation to determine the marginal density $p_{X}(X)$, and thus the joint density, using repeated applications of the chain rule and marginalization: first, notice that

$$
p_{X}(X)=\int p_{X Y}(X, Y) d Y=\int p_{X \mid Y}(X \mid Y) p_{Y}(Y) d Y
$$

However, we can similarly substitute for $p_{Y}(Y)$:

$$
\begin{aligned}
p_{X}(X) & =\int p_{X \mid Y}(X \mid Y) \int p_{Y \mid X}(Y \mid Z) p_{X}(Z) d Z d Y \quad(Z \text { is a dummy variable }) \\
& =\int\left[\int p_{X \mid Y}(X \mid Y) p_{Y \mid X}(Y \mid Z) d Y\right] p_{X}(Z) d Z \\
& =\int h(X, Z) p_{X}(Z) d Z .
\end{aligned}
$$

Using the normalized conditionals from problem 1

$$
\begin{array}{ll}
p(x \mid y)=\frac{y e^{-y x}}{1-e^{-B y}}, & 0<x<B<\infty \\
p(y \mid x)=\frac{x e^{-x y}}{1-e^{-B x}}, & 0<y<B<\infty
\end{array}
$$

calculate $p_{x}(x)$. Hint: $p_{x}(x) \propto\left(1-e^{-B x}\right) / x-$ find the normalizer and verify that p_{x} solves the fixed point equations.
4. [Extra Credit:] Now that we have an analytic form for the marginal $p_{x}(x)$ from problem [3. we can compare with our earlier estimates.
(a) Plot $p_{x}(x)$ and the histogram of collected samples of $p_{x}(x)$.
(b) Compute $\mathbb{E}_{p_{x}(x)}[x]$ using the analytic form found in problem 3 .

References

[Bis06] C. Bishop. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New York, NY, 2006.
[KF09] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge, MA, 2009.

