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Problem Set 3

Handed out: 9 Nov 2009
Due: 23 Nov 2009

Gibbs sampling

Preamble. Suppose that we are given a full joint distribution p(Y1, . . . , Yn) over random
variables, but are only interested in drawing samples Yi ∼ p(Yi). The natural solution to this
problem would be to actually calculate the marginal by integrating over {Y1, . . . Yn} − Yi:

p(Yi) =
∑

{Y1,...Yn}−Yi

p(Y1, . . . , Yn),

from which samples Yi might be drawn.

Unfortunately, in many cases (e.g., where the joint distribution has high treewidth), the re-
quired marginalization is intractable. In Homework 1, you showed that if p(Y1, . . . , Yn) is
given as a graphical model, and Y1, . . . , Yn are all discrete, and you have observations of all
variables except Yk, computing the conditional distribution

p(Yk | Y1 = y1, . . . , Yk−1 = yk−1, Yk+1 = yk+1, . . . , Yn = yn)

is very efficient. In this case, sampling from this conditional distribution only requires sam-
pling from a Bernoulli random variable. Gibbs sampling is an approximate inference method
peculiarly well suited to such situation, where one can sample from the conditional distribu-
tions

p(Yk|{Y1, . . . Yn} − Yk) ∀k.

As outlined in both [KF09, Bis06], the algorithm for Gibbs sampling is quite straightforward:

1. Generate an initial guess (t = 0) about the state (Y1 = yt=0
1 , . . . , Yn = yt=0

n ).

2. Repeat, over t, until convergence (a very loaded statement—see mixing times, stationary
distributions, etc):

Draw yt+1
1 ∼ p(Y1|Y2 = yt

2, . . . Yn = yt
n)

Draw yt+1
2 ∼ p(Y2|Y1 = yt+1

1 , Y3 = yt
3 . . . Yn = yt

n)
...

Draw yt+1
n ∼ p(Yn|Y1 = yt+1

1 , Y2 = yt+1
2 . . . Yn−1 = yt+1

n−1)

As it turns out, these samples {y1
i , y

2
i , . . . , y

T
i } not only converge (in the sense that given a long

enough burn in time, the samples are all coming from the same distribution), but converge to
the “correct” distribution, which in this case is the marginal p(Yi).
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Problem.

1. Write a Gibbs sampler to estimate the marginal distribution generated from the condi-
tional distributions

p(x|y) ∝ ye−yx, 0 < x < B <∞
p(y|x) ∝ xe−xy, 0 < y < B <∞

where B is a known positive constant (as we will see later, the restriction to the interval
x, y ∈ (0, B) ensures that the marginal p(x) exists).

For B = 5, and for sample sizes T = 500, 5000, 50000, plot the histogram of values for x.

Note that although the simulation of p(x) is straightforward using a Gibbs sampler, the
marginal is not obvious from inspection of the above marginals.

2. Importantly, simulation based approximations provide straightforward methods of calcu-
lating the moments of the marginal distributions. Provide an estimate of the expectation
of X, Ep(X)[X] by using the 500, 5000 and 50000 samples from 1).

3. [Extra Credit:] Consider the bivariate case, where we are given pX|Y (X|Y ) and pY |X(Y |X).
As it turns out, we can derive a fixed point integral equation to determine the marginal
density pX(X), and thus the joint density, using repeated applications of the chain rule
and marginalization: first, notice that

pX(X) =
∫

pXY (X,Y )dY =
∫

pX|Y (X|Y )pY (Y ) dY.

However, we can similarly substitute for pY (Y ):

pX(X) =
∫

pX|Y (X|Y )
∫

pY |X(Y |Z)pX(Z) dZ dY (Z is a dummy variable)

=
∫ [∫

pX|Y (X|Y )pY |X(Y |Z) dY

]
pX(Z) dZ

=
∫

h(X, Z)pX(Z) dZ.

Using the normalized conditionals from problem 1

p(x|y) =
ye−yx

1− e−By
, 0 < x < B <∞

p(y|x) =
xe−xy

1− e−Bx
, 0 < y < B <∞

calculate px(x). Hint: px(x) ∝ (1 − e−Bx)/x – find the normalizer and verify that px

solves the fixed point equations.

4. [Extra Credit:] Now that we have an analytic form for the marginal px(x) from problem
3, we can compare with our earlier estimates.

(a) Plot px(x) and the histogram of collected samples of px(x).

(b) Compute Epx(x)[x] using the analytic form found in problem 3.
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