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1 Probability Theory

Preamble In class and in [KF09], the chain rule and Bayes’ rule are cited as “the most
important rules” for the probabilistic analysis of complex systems. Alternatively, some authors
choose to cite the

chain rule (product rule): p(X,Y ) = p(Y |X)p(X)
and the

sum rule (marginalization): p(X) =
∑
Y

p(X,Y )

as the most important rules. In fact, given the product rule, Bayes’ rule is readily derived
from the sum rule. Similarly, the sum rule is readily derived from Bayes’ rule. As stated in
[Bis06], on page 839:

[a]ll of the probabilistic inference and learning manipulations discussed in this
book, no matter how complex, amount to repeated application of these two equa-
tions [the chain rule and sum rule]

(Providing scope to just how fundamental these simple equations are!).

Bishop goes on to describe how one could very well “proceed to formulate and solve compli-
cated probabilistic models purely by algebraic manipulations”—but that graphical represen-
tations (the focus of this course) greatly facilitate visualization, insight into the properties,
learning and inference of these complex probabilistic models.

The bottom line: the chain rule, the sum rule, and Bayes’ rule underlie (nearly) all of the
probabilistic analysis that we will encounter in this course. Furthermore, graphical models
are tools which catalyze the application of these rules to complex systems. 1

1The following problems assume some familiarity with probability theory. For additional
introductory problems, read § 2.1 of [KF09], § 1.2 of [Bis06], and see the course web-
page for CS228 http://www.stanford.edu/class/cs228/materials.html at Stanford, in particular
http://www.stanford.edu/class/cs228/Handouts/ps0-sol.pdf.
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Problems [22 points]

1. [5 points] Find a joint probability distribution P (X1, .., Xn) such that Xi, Xj are inde-
pendent for all i 6= j, but X1, . . . , Xn are not jointly independent.

2. Conditional independence properties

For sets of random variables X,Y,W,Z:

(a) [6 points] Prove the weak union property of conditional independence:

(X ⊥ Y,W|Z) =⇒ (X ⊥ Y|Z,W)

(b) [6 points] Prove the contraction property of conditional independence:

(X ⊥W|Z,Y) & (X ⊥ Y|Z) =⇒ (X ⊥ Y,W|Z)

3. [5 points] Valid probability distributions

Show that conditional parametrization based on cyclic graphs can lead to improper
probability distributions.

2 Bayesian Networks

1. Naive Bayes Model [22 points]

C

X_1 X_2 X_3

Figure 1: Bayes’ net for problem Bayesian Networks 1

(a) [6 points] Consider the naive Bayes’ model given in figure 1, where C with
V al(C) = {T, F} is a binary class variable, and {X1, X2, ..., Xn} are binary ob-
servations about the value of C. Derive an efficient formula for the prediction

Ĉ = arg max
c

p(C = c|X1, X2, . . . , Xn),

(i.e., use the chain rule and Bayes’ rule to find a more compact expression for the
posterior), where the prediction is the maximum value of the posterior p(C|X1, X2, . . . , Xn).

(b) [6 points] Suppose

p(Xi = T |C = T ) = 0.6 for all i
and
p(Xi = T |C = F ) = 0.4 for all i

Calculate, as a function of n, the ratio of posteriors

p(C = T |X1 = T = · · · = Xn)/p(C = F |X1 = T = · · · = Xn)

2



(c) [5 points] Now suppose that we know that X1, X2, . . . , Xn are all identical copies of
one another. What is the ratio of posteriors in this case if we take this dependency
into account?

(d) [5 points] Based on these calculations, what conclusions can be drawn about the
relationship between the prediction and the conditional independence assumption
of the naive Bayes’ model?

2. D-separation [12 points]

Preamble: d-separation Given an expression for a joint distribution in terms of a
product of conditional distributions, we could test whether any potential conditional in-
dependence property holds by repeated application of the sum and chain rules. However,
this approach would likely be very time consuming.

Fortunately, conditional independence properties of the joint distribution can be read
directly from the graph (without any algebraic manipulations), using the framework of
d-separation, where the “d” stands for “directed.”

(a) [7 points] Given the Bayes’ net in figure 2, which of the following conditional
independence statements hold:

a

b

c

f

d

e

g

h

i

j

Figure 2: Bayes’ net for problem Bayesian Networks 2a

i. a ⊥ f
ii. a ⊥ g
iii. b ⊥ i | f
iv. d ⊥ j | g, h
v. i ⊥ b | h
vi. j ⊥ d

vii. i ⊥ c | h, f
(b) [5 points] Assume the following conditional independencies on the random vari-

ables ordered a, b, c, d: a ⊥ b, ¬(d ⊥ a) and a ⊥ d | b, c. Construct a Perfect map
(Bayes’ net) that satisfies these (and only these) independence assumptions.
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3. Towards inference in Bayesian Networks [22 points]

(a) [7 points] Suppose you have a Bayes’ net over variables (X1, ..., Xn) and all vari-
ables except Xi are observed. Using the chain rule and Bayes’ rule, find an efficient
algorithm to compute P (Xi|{X1, ..., Xn}−Xi). In particular, your algorithm should
not require evaluation of the joint distribution.

(b) [7 points] Find an efficient algorithm to sample from a Bayesian network. Hint:
Show that for any joint distribution P (X,Y ) you can sample by first drawing a
sample x ∼ P (X) and then drawing a sample y ∼ P (Y |X = x).

(c) [8 points] Find an efficient (randomized) procedure that, when applied to a Bayesian
Network containing variable X and state x ∈ V al(X), and for fixed parameters ε
and δ, in only polynomially (in 1/δ and 1/ε) many iterations, outputs a value p′

such that with probability at least 1− δ, |P (X = x)− p′| < ε.
Hint: take a look at Fact 1 in the “Notes for Lecture 2, CS 101.2”, found at
http://www.cs.caltech.edu/courses/cs101.2/slides/cs101.2-02-Bandits-notes.pdf

4. Marginal networks [22 points]

(a) [7 points] Consider the alarm network in figure 3:

Burglary Earthquake

Alarm

JohnCall MaryCall

SportsOnTV Naptime

Figure 3: Bayes’ Network for Problem Bayes’ Network 4a

Construct a Bayesian network structure with nodes Burglary, Earthquake, John-
Call, MaryCall, SportsOnTV, and Naptime, which is a minimal I-map for the
marginal distribution over those variables defined by the above network. Be sure
to get all dependencies that remain from the original network.

(b) [10 points] Generalize the procedure you used above to an arbitrary network.
More precisely, assume we are given a network BN , an ordering X1, . . . , Xn that is
consistent with the ordering of the variables in BN , and a node Xi to be removed.
Specify a network BN ′ such that BN ′ is consistent with this ordering, and such
that BN ′ is a minimal I-map of PBN (X1, . . . , Xi−1, Xi+1, . . . , Xn). Your answer
must be an explicit specification of the set of parents for each variable in BN ′.

(c) [5 points] What happens if this algorithm is used to remove the class variable of
a Naive Bayes’ model?
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