Introduction to Artificial Intelligence

Lecture 13 – Approximate Inference

CS/CNS/EE 154

Andreas Krause

Bayesian networks

- Compact representation of distributions over large number of variables
- (Often) allows efficient exact inference (computing marginals, etc.)

HailFinder

56 vars

~ 3 states each

- →~10²⁶ terms
- > **10.000 years**on Top
 supercomputers

Typical queries: Conditional distribution

 Compute distribution of some variables given values for others

$$P(E|J=T)$$
 ?
 $P(E|B|J=T, M=F)$?
 $=\frac{1}{2}P(E,B,J=T, M=F)$

Typical queries: Maximization

MPE (Most probable explanation):

Given values for some vars, compute most likely assignment to all remaining vars

MAP (Maximum a posteriori):

Compute most likely assignment to

some variables

Hardness of inference for general BNs

- Computing conditional distributions:
 - Exact solution: #P-complete
 - NP-hard to obtain any nontrivial approximation

- Maximization:
 - MPE: NP-complete
 - MAP: NP^{PP}-complete
- Inference in general BNs is really hard ⊗

Inference

 Can exploit structure (conditional independence) to efficiently perform exact inference in many practical situations

 For BNs where exact inference is not possible, can use algorithms for approximate inference (later)

Variable elimination algorithm

- Given BN and Query P(X | E=e)
- Choose an ordering of X₁,...,X_n
- Set up initial factors: f_i = P(X_i | Pa_i)
- For i =1:n, $X_i \notin \{X, E\}$
 - Collect all factors f that include X_i
 - Generate new factor by marginalizing out X_i

$$g = \sum_{x_i} \prod_j f_j$$

- Add g to set of factors
- Renormalize P(x,e) to get $P(x \mid e)$

Reusing computation

- Often, want to compute conditional distributions of many variables, for fixed observations
- E.g., probability of *Pits* at different locations given observed *Breezes*
- Repeatedly performing variable elimination is wasteful (many factors are recomputed)
- Need right data-structure to avoid recomputation
- → Message passing on factor graphs

Factor graphs

P(C,D,G,I,S,L) = P(C) P(I) P(D|C) P(G|D,I) P(S|I,G) P(L|S)

Factor graph

- A factor graph for a Bayesian network is a bipartite graph consisting of
 - Variables and
 - Factors
- Each factor is associated with a subset of variables, and all CPDs of the Bayesian network have to be assigned to one of the factor nodes

Sum-product message passing on factor graphs

Messages from node v to factor u

$$M_{V \Rightarrow u}(x_{v}) = \prod_{u' \in \mathcal{N}(v) \setminus \{v\}} M_{u' \Rightarrow v}(x_{v})$$

Messages from factor u to node v

Example messages

$$\mu_{v \to u}(x_{v}) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v}(x_{v}) \qquad \text{P(A)P(B|A)} \qquad \text{P(C|B)}$$

$$\mu_{u \to v}(x_{v}) = \sum_{\mathbf{x}_{u} \sim x_{v}} f_{u}(\mathbf{x}_{u}) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u}(x_{v'}) \qquad \text{AB} \qquad \text{BC}$$

$$\mathcal{M}_{A \to I}(\alpha) = 1 \qquad \qquad \text{A} \qquad \text{B} \qquad \text{C}$$

$$\mathcal{M}_{I \to B}(b) = \sum_{\alpha} f_{I}(\alpha, b) \cdot \mathcal{M}_{A \to I}(a) = \sum_{\alpha} p(a)P(b(a) \cdot 1 = P(b))$$

$$\mathcal{M}_{B \to Q}(b) = \mathcal{M}_{I \to B}(b) = P(b)$$

$$\mathcal{M}_{Q \to C}(c) = \sum_{b} f_{Q}(b, c) \cdot \mathcal{M}_{B \to Q}(b) = \sum_{b} P(c|b) \cdot P(b) = P(c)$$

Belief propagation on polytrees

- Belief propagation (aka sum-product) is exact for polytree Bayesian networks
 - Factor graph of polytree is a tree
 - Choose one node as root
 - Send messages from leaves to root, and from root to leaves
- After convergence:

$$P(X_v = x_v) = \prod_{u \in N(v)} \mu_{u \to v}(x_v)$$

$$P(\mathbf{X}_u = \mathbf{x}_u) = f_u(\mathbf{x}_u) \prod_{v \in N(u)} \mu_{v \to u}(x_v) \ R$$

• Thus: immediately have correct values for all marginals!13

What if we have loops?

- Can still apply belief propagation even if we have loops
 - Just run it, close your eyes and hope for the best!
 - Use approximation:

$$P(X_v = x_v) \approx \prod_{u \in N(v)} \mu_{u \to v}(x_v)$$

- In general, will not converge...
- Even if it converges, may converge to incorrect marginals...
- However, in practice often still useful!
 - E.g., turbo-codes, etc.
- "Loopy belief propagation"

Behavior of Loopy BP

- Loopy BP multiplies same factors multiple times
 - → BP often overconfident

Does Loopy BP always converge?

- No! Can oscillate!
- Typically, oscillation the more severe the more "deterministic" the potentials

What about MPE queries?

E.g.,: What's the most likely assignment to the unobserved variables, given the observed ones?

(same as sum-product/BP, but with max instead of sums!)

Max-product message passing on factor graphs

Messages from nodes to factors

$$\mu_{v \to u}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v}(x_v)$$

Messages from factors to nodes

Sampling based inference

- So far: deterministic inference techniques
 - Variable elimination
 - (Loopy) belief propagation
- Will now introduce stochastic approximations
 - Algorithms that "randomize" to compute expectations
 - In contrast to the deterministic methods, guaranteed to converge to right answer (if wait looong enough..)
 - More exact, but slower than deterministic variants

Computing expectations

- Often, we're not necessarily interested in computing marginal distributions, but certain expectations:
- Moments (mean, variance, ...)

$$\mathbb{E}_P[X^k] = \int x^k P(x) dx$$

Event probabilities

$$P(X>c) = \mathbb{E}_P[I_{X>c}] = \int [x>c]P(x)dx$$
 In general:
$$= \int_{\mathbb{R}} P(x)f(x) dx$$
 for continuous
$$= \sum_{\mathbf{x}} P(x)f(x)$$
 for Liscocke

Sample approximations of expectations

- $x_1,...,x_N$ samples from RV X
- Law of large numbers:

$$\mathbb{E}_P[f(X)] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Hereby, the convergence is with probability 1 (almost sure convergence)
- Finite samples:

$$\mathbb{E}_{p}(f(x)) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

How many samples do we need?

Hoeffding inequality
 Suppose f is bounded in [0.C]. Then

$$P\Big(\big| \mathbb{E}_P[f(X)] - \frac{1}{N} \sum_{i=1}^{N} f(x_i) \big| > \varepsilon \Big) \le 2 \exp(-2N\varepsilon^2/C^2)$$

Thus, probability of error decreases exponentially in N!

Suppose I want error at nort
$$\varepsilon$$
 with probat least 1-S

 $\exp(-2N\varepsilon^2/C^2) \leq S/2$
 $\Leftrightarrow -2N\varepsilon^2/C^2 \leq \ln S/2$
 $\Leftrightarrow 2N\varepsilon^2/C^2 \leq \ln 3/5$
 $\Leftrightarrow N \geq \frac{1}{2} \frac{C^2}{\varepsilon^2} \ln \frac{2}{5}$

Need to be able to draw samples from P

Sampling from a Bernoulli distribution

 Most random number generators produce (approximately) uniformly distributed random numbers

• How can we draw samples from X ~ Bernoulli(p)?

Sampling from a Multinomial

• $X \sim Mult([\mu_1,...,\mu_k])$ where $\mu_i = P(X=i)$; $\sum_i \mu_i = 1$

- Function g: $[0,1] \rightarrow \{1,...,k\}$ assigns state g(x) to each x
- Draw sample from uniform distribution on [0,1]
- Return $g^{-1}(x)$

Forward sampling from a BN

Monte Carlo sampling from a BN

- Sort variables in topological ordering X₁,...,X_n
- For i = 1 to n do
 - Sample $x_i \sim P(X_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1})$
- Works even with loopy models!

Computing probabilities through sampling

- Want to estimate probabilities
- Draw N samples from BN

Marginals

P(L=T) =
$$\sum_{i=1}^{N} \left[L(x_i) = T \right] = Count(L>T)$$

$$= 1 \text{ if } L(x_i) = T$$

$$= 0 \text{ otherwise}$$

Conditionals

$$P(L=T|H=F) = \frac{P(L=T,H=F)}{P(H=F)} \approx \frac{(ount(L=T,H=F))}{(ount(H=F))}$$

Rejection sampling

Collect samples over all variables

$$\widehat{P}(\mathbf{X}_A = \mathbf{x}_A \mid \mathbf{X}_B = \mathbf{x}_B) \approx \frac{Count(\mathbf{x}_A, \mathbf{x}_B)}{Count(\mathbf{x}_B)}$$

- ullet Throw away samples that disagree with ${f x_B}$
- Can be problematic if $P(X_B = X_B)$ is rare event

Sample complexity for probability estimates

Absolute error:

$$Prob(|\widehat{P}(\mathbf{x}) - P(\mathbf{x})| > \varepsilon) \le$$

Relative error:

$$Prob\Big(\widehat{P}(\mathbf{x})<(1+\varepsilon)P(\mathbf{x})\Big)\leq 2\exp(-NP(\mathbf{x})\varepsilon^2/3)$$
 if P(x) exponentially small, need Nexponentially lage

Sampling from rare events

- Estimating conditional probabilities $P(X_A \mid X_B = x_B)$ using rejection sampling is hard!
 - The more observations, the unlikelier $P(X_B = x_B)$ becomes
- Want to directly sample from posterior distribution!

Gibbs sampling

- Start with initial assignment $\mathbf{x}^{(0)}$ to all variables
- For t = 1 to ∞ do
 - Set $x^{(t)} = x^{(t-1)}$
 - For each variable X_i
 - Set $\mathbf{v_i}$ = values of all $\mathbf{x^{(t)}}$ except $\mathbf{x_i}$
 - Sample $x^{(t)}_{i}$ from $P(X_{i} | \mathbf{v}_{i})$
- For large enough t, sampling distribution will be "close" to true posterior distribution!
- Key challenge: Computing conditional distributions P(X_i | v_i)