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Bayesian networks

¢ Compact representation of distributions over large
number of variables

¢ (Often) allows efficient exact inference (computing

marginals, etc.)
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Typical queries: Conditional distribution

¢ Compute distribution of some

@ variables given values for others
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Typical queries: Maximization
o MPE (Most probable explanation):

@ Given values for some vars,

compute most likely assignment to

° all remaining vars
@* e* L¥) ::O\N'Zw\ox P(Ese,g’bud(?@klbz‘[\'m:):)

1o,

¢ MAP (Maximum a posteriori):

Compute most likely assignment to

Mo quee!  some variables
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Hardness of inference for general BNs

¢ Computing conditional distributions:

¢ Exact solution: #P-complete
¢ NP-hard to obtain any nontr|V|aI apprommahon
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e MPE: NP-complete
o MAP: NPPP-complete

¢ Inference in general BNs is really hard ®



Inference

¢ Can exploit structure (conditional independence) to
efficiently perform exact inference in many practical
situations

o For BNs where exact inference is not possible, can use
algorithms for approximate inference (later)



Variable elimination algorithm

¢ Given BN and Query P(X | E=e)
o Choose an ordering of X,,...,X,
» Set up initial factors: f, = P(X. | Pa;)
o Fori=1:n, X, & {X,E}
e Collect all factors f that include X.
o Generate new factor by marginalizing out X

QZZHfj
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¢ Add g to set of factors
¢ Renormalize P(x,e) to get P(x | e)



Reusing computation

¢ Often, want to compute conditional distributions of
many variables, for fixed observations

¢ E.g., probability of Pits at different locations given
observed Breezes

¢ Repeatedly performing variable elimination is
wasteful (many factors are recomputed)

¢ Need right data-structure to avoid recomputation
=» Message passing on factor graphs



Factor graphs

¢ P(C,D,G,I,S,L) =P(C) P(l) P(D|C) P(G|D,I) P(S]|1,G) P(L‘|S)
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Factor graph

¢ A factor graph for a Bayesian network is a bipartite
graph consisting of
¢ Variables and
e Factors

o Each factor is associated with a subset of variables,
and all CPDs of the Bayesian network have to be
assigned to one of the factor nodes




Sum-product message passing on factor graphs

o Messages from node v to factor u

/U\ (Kv = W Ly X
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¢ Messages from factor u to node v




Example messages
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Belief propagation on polytrees

¢ Belief propagation (aka sum-product) is exact for

polytree Bayesian networks @
e Factor graph of polytree is a tree @?
e Choose one node as root Q /
¢ Send messages from leaves to root, @
\y
and from root to leaves @
o After convergence: A
P(8a) -Pa)
yd
P(Xv — m’l)) — H Hu—v (:C'U) @Sf /}@
-
ueN (v) C\P{C'B,@)
P(Xu — Xu) — fu(xu) H ,Uv—vu,(xv) Y
vEN (u) >

¢ Thus: immediately have correct values for all marginalshs



What if we have loops?

¢ Can still apply belief propagation even if we have loops
¢ Just run it, close your eyes and hope for the best!

o Use approximation: P(X, = z,) ~ H Loy (X))

¢ In general, will not converge...

¢ Even if it converges, may converge to incorrect marginals...

¢ However, in practice often still useful! C)
¢ E.g., turbo-codes, etc.
) 1
¢ “Loopy belief propagation” OO
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Behavior of Loopy BP

. P(X, =1) |
17 BP estimate
True
./@D\‘ posterior -7/
: ST
O >
Ilteration #

¢ Loopy BP multiplies same factors multiple times
=>» BP often overconfident
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Does Loopy BP always converge?

o No! Can oscillate!

¢ Typically, oscillation the more severe the more
“deterministic” the potentials
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What about MPE queries?

¢ E.g.,: What’s the most likely assignment to the
unobserved variables, given the observed ones?
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¢ Use max-product %

(same as sum-product/BP, but with max instead of sums!)
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Max-product message passing on factor graphs

¢ Messages from nodes to factors

My — (xv) — H Moy’ — v (ajv)

u €N (v)\{u}

¢ Messages from factors to nodes

Mu—w(xv) — mggf fu(Xu) H ,uv’—>u(xv’)
v'e€N(u)\{v}




Sampling based inference

¢ So far: deterministic inference techniques

¢ Variable elimination
¢ (Loopy) belief propagation

¢ Will now introduce stochastic approximations

¢ Algorithms that “randomize” to compute expectations

¢ In contrast to the deterministic methods, guaranteed to
converge to right answer (if wait looong enough..)

¢ More exact, but slower than deterministic variants
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Computing expectations

¢ Often, we’re not necessarily interested in computing
marginal distributions, but certain expectations:

¢ Moments (mean, variance, ...)
Ep[X*] = /ZUkP(ZU)CZLIZ
¢ Event probabilities

P(X > ¢) = Epllyo] = / 2> P(z)da

(£ el Ep[f00) =) PR e v codiauons
- & P ) o Lok
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Sample approximations of expectations

® Xy,...,Xy S@mples from RV X

¢ Law of large numbers:

Ep[f(X)] = lim —Zf ;)

N—)ooN

¢ Hereby, the convergence is with probability 1
(almost sure convergence)

¢ Finite samples:

N
s () = w o {)

(=t
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How many samples do we need?

¢ Hoeffding inequality
Suppose fis bound]%d in [0.Cl. Then

P([Ep(F(X)] — 5 D f(i)] > ) < 2exp(-2Ne2/C?)

A —
gmr(@ vy,

e Thus, probability of error decreases exponentially in N!
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o Need to be able to draw samples from P
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Sampling from a Bernoulli distribution

¢ Most random number generators produce
(approximately) uniformly distributed random
numbers

¢ How can we draw samples from X ~ Bernoulli(p)?

VESR/A)
X= 1 if Y <P
X =0 I 72
o P
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Sampling from a Multinomial

where Y. = P(X=i); >. M. =1

¢ Function g: [0,1]2>{1,...,k} assigns state g(x) to each x
e Draw sample from uniform distribution on [0,1]
o Return g(x)

24



Forward sampling from a BN

Int Diff | [80,100]
Low asy 03
Low | Hard 0.05
High | Easy 0.9
High | Hard 0.5

(o)

| Grade | Fail | Pass
80,100] | 0.1 0.9
[50,80) | 0.4 0.6
[0,50) | 0.88 | 0.01
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Monte Carlo sampling from a BN

» Sort variables in topological ordering X,,...,X,

o Fori=1tondo
e Sample x, ~ P(X. | X;=Xq, ..., X, =X ;)

o Works even with loopy models! (c)

(H) 26



Computing probabilities through sampling

¢ Want to estimate probabilities (¢)
¢ Draw N samples from BN
X XN Q 0
¢ Marginals
P(L:ﬁg,egf Mper] = CetED PP
(=l \_/\/-\./~ 0
"0 T o
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Rejection sampling

¢ Collect samples over all variables

. Count
P(X4=%4|Xp=xp)~ 2 (x4, %)

Count(xp)

o Throw away samples that disagree with xg
» Can be problematic if P(Xg = xg) is rare event
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Sample complexity for probability estimates

o Absolute error:

Prob(|P(x) - P(x)| > ¢) <

¢ Relative error:
Pmb<13(x) <(1+ 5)P(X)) < 2 exp(— N P(x)e2/3)
it Pl comedilly gnill  need Negonsdady loy,
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Sampling from rare events

» Estimating conditional probabilities P(X, | Xg=x;)
using rejection sampling is hard!
o The more observations, the unlikelier P(Xg = xg) becomes

¢ Want to directly sample from posterior distribution!
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Gibbs sampling

o Start with initial assighment x({® to all variables
o Fort=1toedo

o Set x(t) = x(t-1)

e For each variable X

« Set v, = values of all x®* except x.
« Sample x. from P(X. | v;)

¢ For large enough t, sampling distribution will
be “close” to true posterior distribution!

¢ Key challenge: Computing conditional
distributions P(X; | v;)
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