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¢ Recitations: Thursday 4:30pm — 5:30pm, Annenberg 107

¢ Details about projects
¢ Will also be posted on webpage

¢ By Monday 10/11
e Form team of 3 students
¢ Need to select project (Doodle link will be sent today)
¢ For independent projects: need to submit proposal

¢ If you don’t have a team, send email to TAs
¢ Homework 1 out on Friday



Types of games
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Scissors
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In this class, focus on two-player, sequential, zero-sum,

discrete (mostly deterministic)



Games Vvs. search

¢ In games, actions are nondeterministic
¢ Opponent can affect state of the environment
¢ Optimal solution no longer sequence of actions,
instead a strategy (policy, conditional plan)
o IfyouX/l'lldo, elseifyoudoY/l'lldoZ, ...



Game tree
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Minimax game tree

¢ Search for optimal move no matter what opponent does
¢ minimax value = best achievable payoff against best play
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Solving deterministic games

¢ MiniMax used to calculate optimal move:

¢ Inductive definition:

If nis terminal node:
o Value is utility(n.state)

If nis MAX node:
¢ Value is highest value of all successor node values

If nis MIN node
¢ Value is lowest value of all successor node values



Properties of minimax search
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¢ Key idea: For each node n in minimax tree keep track of
¢ a: Best value for MAX player if n is reached

¢ B: Best value for MIN player if n is reached

Player
o Never need to explore

consequences of actions

for which B<a Opponent 5]

¢ Avoid exploring “provably
suboptimal” parts -~
. . Player
of minimax tree

Opponent
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a-B-pruning algorithm

function ALPHA-BETA-DECISION(state) returns an action
return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))
-_—

function MAX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
v —00
for a, s in SUCCESSORS(state) do
v MAX(v, MIN-VALUE(s, o, 3))
if v > 3 then return v
a«— MaX(a, v)
return v

function MIN-VALUE(state, , 3) returns a utility value
same as MAX-VALUE but with roles of a, 3 reversed
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Does move ordering matter?

MAX

MIN
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Move ordering matters a lot

» Worst case: No improvement O[V")

o Best case (ideal ordering): m/
Cen, 79/~
ﬁw'rﬂa/ cloge
¢ Random ordering: O/ (b/zo}b)m) W prackice

¢ How to find a good ordering?
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Large state spaces

¢ Typical branching factor in chess: 35
¢ Computing the complete minimax tree is intractable

¢ Instead: Cut off search, and replace utility(s) with eval(s)
¢ eval(s) is heuristic value of state s

i.ﬁ-ﬁ.i- Modercn [ & lhok /it

2 2 24 patm s, vooky , ...
H B B B | )
H B B B
..é-ﬁ.I-
:Ezl EVE
H - F

IS

19



Developing evaluation functions

¢ This is where expert knowledge comes in

¢ Typical approach:

o Select features f,,...,f,, that may be useful, e.g., value of
pieces on board, positions of pieces, ...

e Learn weights from examples

eval (s Z w; fi (S

¢ Deep Blue used ~6,000 different features!

¢ Often, reinforcement learning is very useful here

(e.g., TD-gammon beats world champion in backgammon)



Problems with cutoff search
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Taming the horizon effect

¢ Quiescence search

¢ Evaluation function also evaluates “stability” (e.g., strong
captures, etc.)

¢ Cutoff postponed if position is unstable
e Search time no longer constant

¢ Singular extension
¢ Search deeper if a node’s value is much better than its
siblings’
¢ Reduces effective branching factor
e Can search much longer sequences (even 30-40ply)
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Playing world class chess

o Current PCs can evaluate ~200 million nodes / 3 min
¢ Minimax search: ~5 ply lookahead
o With a- pruning: ~10 ply

o Further improvements:
¢ Quiescence search: Only evaluate “stable” positions
e Transposition tables: Remember states evaluated before
e Singular extensions: Expand tree if there is singular best move
e Null move heuristic: Get lower bound by letting opp. move 2x
e Precompute endgames (all 5, some 6 piece positions)
e Opening library (up to ~30ply in first couple moves)

¢ Hydra: 18 ply lookahead (on 64 processor cluster)
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Stochastic games

0 1 2 3 4 5 6 7 8 9 10 11 12

25 24 23 22 21 20 19 18 17 16 15 14 13

o Two “types” of uncertainty

o Adversarial and stochastic
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ExpectiMiniMax tree
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Solving stochastic games

¢ ExpectiMiniMax used to calculate optimal move
¢ Defined inductively:

If n is terminal node (or cutoff):
o Value is utility(n.state) (or eval(n.state))

If nis MAX node:
¢ Value is highest value of all successor node values

If nis MIN node
¢ Value is lowest value of all successor node values

If nis CHANCE node

o Value is (weighted) average of all successor node
values 26



Dealing with large state spaces

¢ Backgammon:

e 21 possible roles with 2 die; ~20 legal moves
¢ #nodes for depth 4 tree:
9 (20.2:)2
¢ As depth increases, reaching any particular node
becomes exponentially unlikely
¢ Lookahead becomes less valuable
e a-B-pruning much less useful: world just won’t play along!

¢ TD-gammon competitive with best human players:
e Uses only 2 ply lookahead!

e But very carefully trained evaluation function
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